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Abstract— While traditional approaches to manipulation
planning assume known object templates, recent approaches
to “category-level manipulation” aim to manipulate a category
of objects with potentially unknown instances and large intra-
category shape variation. In this paper we explore an object
representation to enable precise category-level manipulation,
capturing a notion of the object configuration and extent, while
being generalizable to novel instances. Building on our previous
work, kPAM1, we combine semantic keypoints with dense
geometry (a point cloud or mesh) as the interface between the
perception module and motion planner. Leveraging advances
in learning-based keypoint detection and shape completion,
both dense geometry and keypoints can be perceived from raw
sensor input. Using the proposed hybrid object representation,
we formulate the manipulation task as a motion planning
problem which encodes both the object target configuration and
physical feasibility for a category of objects. In this way, many
existing manipulation planners can be generalized to categories
of objects, and the resulting perception-to-action manipulation
pipeline is robust to large intra-category shape variation.
Extensive hardware experiments demonstrate our pipeline can
produce robot trajectories that accomplish tasks with never-
before-seen objects. The video demo is available on this link:
https://sites.google.com/view/generalizable-manipulation.

I. INTRODUCTION

This paper focuses on robotic manipulation planning at
a category level. In particular, the pipeline should take raw
sensor inputs and plan physically feasible robot trajectories
that will move a set of objects to their target configuration.
For example, the robot should “place mugs in a box” and
handle potentially unknown instances in the mug category,
despite the variation of shape, size, and topology. Accom-
plishing these types of tasks is of significant importance to
both industrial applications and interactive assistant robots.

To achieve this goal, we need an object representation
that (1) is accessible from raw sensor inputs, (2) with
which the manipulation planner can reason about both the
physical feasibility and desired object configuration, (3) can
generalize to novel instances. Perhaps 6-DOF pose is the
most widely-used object representation in robotic manipula-
tion. Most manipulation planning algorithms [27], [24], [4]
assume the known geometric template and 6-DOF pose of the
manipulated objects. Consequently, many contributions from
the vision community [23], [30], [20], [3] focus on pose
estimation. However, as detailed in Sec. V-B, representing
an object with a parameterized pose defined on a fixed
geometric template, as these works do, may not adequately
capture large intra-class shape or topology variations. On the
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1kPAM [17] stands for KeyPoint Affordance-based Manipulation.

other hand, many works [6], [19], [32], [10] focus on robot
grasping planning. Although these methods enable robotic
picking for arbitrary objects, it is hard to extend them to
more complex tasks that involve object target configuration.

In our previous work kPAM [17], we represent objects
using semantic 3D keypoints, which provides a concise way
to specify the target configuration for a category of objects.
Although this approach has accomplished several category-
level manipulation tasks, it lacks the complete and dense
geometric information of the object. Thus, kPAM [17] cannot
reason about physical properties such as the collision, static
equilibrium, visibility, and grasp stability of the planned
robot action, despite their obvious importance in robotic
applications. Authors of kPAM need to manually specify var-
ious intermediate robot configurations, which can be labor-
intensive and sub-optimal. Furthermore, the pipeline can be
overly confident in physically infeasible robot trajectories
and send them for execution, which is rather dangerous.

Building on kPAM [17], we resolve this limitation with
a new hybrid object representation which combines both (i)
semantic 3D keypoints and (ii) full dense geometry (a point
cloud or mesh). The dense geometry is obtained by lever-
aging well-established shape completion algorithms [34],
[18], [21], which generalize well to novel object instances.
With the combined dense geometry and keypoints as the
object representation, we formulate the manipulation task as
a motion planning problem that can encode both the object
target configuration and physical feasibility for a category
of objects. This motion planning problem can be solved
by a variety of existing planners and the resulting robot
trajectories can move the objects to their target configuration
in a physically feasible way. The entire perception-to-action
manipulation pipeline is robust to large intra-category shape
variation. Extensive hardware experiments demonstrate our
method can reliably accomplish manipulation tasks with
never-before-seen objects in a category.

The contribution of this work is twofold. Conceptually,
we introduce a hybrid object representation consists of
dense geometry and keypoints as the interface between
the perception module and planner. This representation has
similar functionalities with the existing 6-DOF pose repre-
sentation with templates in robot manipulation, while the
generalizability to novel instances makes it a promising
alternative. Systematically, our work is the first one we know
that integrates shape completion with manipulation planning
and demonstrate its generalization. This integration enables
many existing manipulation planners, either optimization-
based methods [24], [27] or sampling-based approaches [4],
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[25], to handle a category of objects in a unified and precise
way.

This paper is organized as follows: in Sec. II we review
related works. Sec. III provides background knowledge about
the keypoint representation in [17]. Sec. IV describes our
manipulation pipeline. Sec. V demonstrates our methods on
several manipulation tasks and shows generalization to novel
instances. Sec. VI concludes this work.

II. RELATED WORK

A. Pose-based Robotic Manipulation

For most manipulation applications, the object pose is
the default interface between the perception and planning
modules: the perception module estimates the pose from
raw sensor inputs; the planning module takes the estimated
pose as input and plans robot actions to accomplish some
manipulation tasks. Researchers have made many contribu-
tions on both the pose estimation [23], [30], [20], [3] and
manipulation planning [24], [27], [4], [25]. Some works [1],
[11] integrate state-of-the-art pose estimators with trajectory
planners to build fully functional manipulation pipelines and
solve real-world tasks such as packing and assembly.

However, pose estimation can be ambiguous under large
intra-category shape variations, and using one geometric
template for motion planning and object target specification
can lead to physically infeasiblity for other instances. A
comparison is made in Sec. V.

B. Manipulation at a Category Level

Several existing works aim at robot manipulation for a
category of object. Among them, kPAM [17] uses a mod-
ularized pipeline where the semantic keypoints are used to
represent the object. However, kPAM cannot reason about
physical feasibility. As a result, unsafe robot trajectories
can be sent to robot execution instead of stopped early
(see Sec. V-E), which can be rather dangerous. On the
other hand, [5] demonstrates robotic pick-and-place across
different instances using reinforcement learning. However,
the reward engineering and training procedure in these algo-
rithms limit the generalization to new target configurations
and manipulation tasks.

C. Grasping and Manipulation with Shape Completion

Robot grasp planning is the task of computing a stable
grasp pose that allows the robot to reliably pick up the object.
Among various approaches for grasp planning, model-free
methods [32], [6], [19], [15] typically train deep networks
that take raw sensor observations as input and produce grasp
poses as output. In contrast, model-based algorithms [33],
[16], [29] estimate the grasp quality based on geometric
information such as antipodal points or surface normal, then
select the grasp with the best grasp quality.

As the geometry obtained from typical RGBD sensors
are noisy and incomplete, several works [29], [14], [31],
[28] combine shape completion with grasping planning for
improved performance and robustness. [22] also shows shape

Fig. 1: An overview of the proposed hybrid object representation
for category-level manipulation planning using the mug as an exam-
ple. We exploit a hybrid object representation consists of semantic
keypoints and dense geometry. The semantic keypoint are used
to specify the desired object target configuration, while the dense
geometry is used to ensure the physical feasibility of the planned
robot action. Benefit from advances in learning based keypoint
detection and shape completion, the proposed object representation
can be obtained from raw images, and the resulting perception-
to-action pipeline generalizes to novel instances within the given
category.

completion can improve the performance of robot object
searching.

In this work, we are interested in category-level robotic
manipulation planning. This task requires reasoning about
both the desired object configuration and physical feasibility,
and is out of the scope for the above-mentioned methods.

III. PRELIMINARY: KPAM

In this section we briefly recap kPAM [17]. kPAM is
a framework to specify the object target configuration for
manipulation. In kPAM, each object is represented by several
semantic 3D keypoints p ∈ R3×N , where N is the number
of keypoints. Using the mug category as an example, we
may represent the mug by N = 2 keypoints: ptop center and
pbottom center, as shown in Fig. 1. These keypoints are detected
from raw sensor inputs (typically RGBD images) using
neural network based detectors.

In kPAM, the robot action is abstracted as a rigid trans-
formation Taction ∈ SE(3) on the object, and the transformed
keypoint would be Taction p. The object target configuration
is specified as a set of geometric costs/constraints on the
transformed keypoint Taction p. Using the mug in Fig. 1 as an
example, to place the mug upright at some target location
ptarget, the planned robot action Taction should satisfy

||Taction pbottom center− ptarget||= 0 (1)

After the object has been grasped, the Taction would be
applied, which is essentially a rigid transformation of the
robot end-effector.

As the dense geometry information of the object is miss-
ing, it remains unclear how to ensure the robot trajectory that
apply Taction to the object is physically feasible. This work
resolves this issue.
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Fig. 2: An overview of the manipulation pipeline. The hybrid object representation consists of dense geometry and keypoint is used as
the interface between the perception module and manipulation planner. Given a RGBD image with instance segmentation, we perform
shape completion and keypoint detection to obtain dense geometry and 3D keypoints, respectively. Then, the perception result is used to
plan robot trajectories that move the objects to their desired configurations while satisfying physical constraints. Semantic keypoints are
used to specify the object target configuration, while dense geometry is used to ensure the physical feasibility of the planned robot action.

IV. MANIPULATION FRAMEWORK

As mentioned in Sec. I, we need dense geometry to reason
about the collision, static equilibrium, visibility, and grasp
stability. There exist several possibilities to obtain it. In
previous works, dense geometry is obtained by transforming
the geometric template with an estimated pose. However as
shown in our experiment, pose estimation does not generalize
to new objects. One may also consider some coarse approx-
imation, such as the convex hull of keypoints. However, the
generality of the pipeline can be compromised if the geom-
etry representation is not sufficiently accurate. For instance,
the keypoints convex-hull approximation is not suitable for
the “put mug on a rack” task in our experiment, where the
non-convex mug handle geometry must be considered.

We propose to use shape completion, which directly
estimated the accurate, dense and complete geometry (in
the form of point cloud or mesh) from raw observation.
Shape completion is extensively studied [34], [18], [21] in the
vision community and well-trained shape complete networks
generalize well to a category of objects with potentially
unseen instances. Furthermore, we demonstrate that the data
used to train the shape completion network can be collected
automatically. These properties make shape completion a
promising candidate for manipulation tasks.

As illustrated in Fig. 2, we use the hybrid object rep-
resentation consists of dense geometry and keypoints as
the interface between the perception and planning modules.
The semantic keypoints are designated manually and used
to specify the object target configuration, while the dense
geometry is used to ensure the physical feasibility of the
planned robot action. The perception part includes shape
completion and keypoint detection, which is detailed in
Sec. IV-A. The manipulation planning and grasp planning
that use the perception results are presented in Sec. IV-B
and Sec. IV-C, respectively.

A. Perception and Automatic Data Collection

The task of perception is to produce the proposed hybrid
object representation from raw sensor inputs, which consists
of 3D keypoints and dense geometry (point cloud or mesh).
Note that although we present specific approaches used in
our pipeline, any technique for keypoint detection and shape
completion can be used instead. For keypoints we adopt the
method in our previous work kPAM [17], and this subsection
mainly focuses on the perception of dense geometry.

We use the state-of-the-art ShapeHD network [34] for 3D
shape completion. ShapeHD is a fully convolutional network
that takes RGBD images as input and predicts 3D volumetric
occupancy. Then the completed point cloud can be extracted
by taking the occupied voxel. If the object mesh is required,
triangulation algorithms such as marching cubes can be used.
The completed geometry are aligned with the observed object
(viewer-centered in [34]) and expressed in the camera frame,
we can further transform it into the world frame using the
calibrated camera extrinsic parameters.

The shape completion network requires training data con-
sists of RGBD images and corresponding ground-truth 3D
occupancy volumes. We collect training data using a self-
supervised method. Given a scene containing an object of
interest, we first perform 3D reconstruction of that scene.
Then, we perform background subtraction to obtain the
reconstructed mesh of the object. Finally, we can get the
occupancy volume by transforming the reconstructed mesh
into camera frame and voxelization. Note that the data gen-
eration procedure does not require pre-built object template
or human annotation.

In our experiment, we collect 117 scenes and over 100,000
pairs of RGBD images and ground-truth 3D occupancy
volumes within four hours. Even with small amount of data
we were able to achieve reliable and generalizable shape
completion, some qualitative results are shown in Sec. V-B.
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B. Manipulation Planning Formulation

In this subsection we discuss the formulation of manipula-
tion planning problem. This planning problem can be solved
by many existing planners [7], [4], [25] to produce robot
trajectories. From another perspective, we aim to generalize
these existing planners from a specific instance to a category
of potentially unknown objects.

As mentioned in Sec. IV, we represent an object o j by its
3D semantic keypoints p j ∈ R3×N and dense geometry (point
cloud or mesh), where 1 ≤ j ≤M and M is the number of
objects. Following many existing works [7], [4], [25], we
assume that the robot can change the state of an object
only if the object is grasped by the robot. Furthermore, we
assume the object is rigid and the grasp is tight. In other
words, there is no relative motion between the gripper and
the grasped object. Both the semantic keypoints and dense
geometry would move with the robot end-effector during
grasping. To achieve this, we need a grasp planner which
is discussed in Sec. IV-C.

Given the object representation, the concatenated config-
uration for robot and objects at time t is defined as X t =
[ot

1, ...,o
t
M,qt ], where 1 ≤ t ≤ T , T is the number of time

knots and qt is the robot joint configuration. The general
planning problem can be written as

minimize:
X1,...,XT

f (X1, ...,XT ) (2)

subject to: g(X1, ...,XT )≤ 0 (3)

h(X1, ...,XT ) = 0 (4)

where f is the objective function, g and h are the concen-
trated inequality and equality constraints. If optimization-
based planning algorithms [24], [26] are used to solve the
problem (2), f , g and h should be differentiable. On the other
hand, many sampling-based planners [13], [12] or TAMP
algorithms [4], [9] only need a binary predicate on whether
the constraint is satisfied.

Using the proposed object representation consist of seman-
tic 3D keypoints and dense geometry, the key benefit is that
the motion planner can handle a category of objects with-
out instance-wise tuning. In the following text, we discuss
several important costs and constraints that are related to the
object representation.
Object Target Configuration Let pt

j be the keypoints of
the object o j at the time t, where 1 ≤ t ≤ T . The target
configuration of an object o j can be represented as a set of
costs and constraints on its semantic keypoint pT

j , where T
is the terminal time knot. For instance, to place the mug at
some target location ptarget as illustrated in Fig. 1, we need
an equality constraint

||pT
bottom center− ptarget||= 0 (5)

where pT
bottom center is the mug bottom-center keypoint ex-

pressed at time T . Note that this constraint can handle mugs
with different size, shape and topology. Many other costs
and constraints can be used to specify the object target
configuration. Please refer to kPAM [17] for more details.

Collision Avoidance The dense geometry information from
shape completion can be used to ensure the planned tra-
jectory is collision-free. Specifically, let Br denote the set
of rigid bodies of the objects, robot and environment, where
the geometry of objects are obtained using shape completion.
We need to ensure

signed distance(X t ;bi,b j)≥ δsafe (6)
for bi ∈ Br, b j ∈ Br, i 6= j, 1≤ t ≤ T (7)

where δsafe is a threshold, signed distance(X t ;bi,b j) is the
signed distance [24] between the pair of rigid body (bi,b j)
at the configuration X t . Practically, it is usually unnecessary
to check the collision of every rigid body pairs, as most rigid
bodies except the grasped object and robot end-effector have
limited movement.

Geometric Predicates In many planning algorithms [8],
[27], geometric predicates are used to model the geometric
relationship between the objects and the environment. Al-
though these predicates are typically proposed in the context
of known objects with geometric templates, they can benefit
from shape completion and naturally generalize to a category
of objects. Here we summarize several examples used in
these manipulation planners.
• The static stability constraint enforces that the object

placement surfaces are aligned with one of the envi-
ronment placement regions. To use this predicate, it is
required to extract the surfaces on the object that afford
placing from the object dense geometry. Please refer
to [8] for more details.

• The visibility constraint requires the line segments from
the sensor to the object are not blocked by other objects
or the robot. In other words, the manipulate object
should not block or be blocked by other objects.

• The containment constraint enforces the convex hull
of an object is included in a container. This constraint
needs the convex hull of the object, which can be com-
puted using the dense geometry from shape completion.

C. Grasping

The grasp planning module is responsible to compute a
grasp pose that allows the robot to stably pick up and transfer
the object. Various algorithms [19], [6], [16] have been
proposed for grasp planning. Some of them [29], [14], [31]
are built upon shape completion and can be easily integrated
into our pipeline. These algorithms are object-agnostic and
can robustly generalize to novel instances within a given
category.

V. RESULTS

In this section, we demonstrate a variety of manipulation
tasks using our pipeline. The particular novelty of these
demonstrations is that our method can automatically plan
robot trajectories that handle large intra-category variations
without any instance-wise tuning or specification. The video
demo and source code are available on our this link.
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Fig. 3: An overview of our experiments. (a) and (b) are the shoes and mugs used to test the manipulation pipeline. Note that both the
shoes and mugs contain substantial intra-category shape variation. We use three manipulation tasks to evaluate our method: (c) put shoes
on a shelf; (d) put mugs in a container; (e) hang mugs on a rack by the mug handles. Visit this link to watch the video demo.

Fig. 4: The qualitative results for shape completion. (a) is the
input RGB image. (b) and (c) are the dense geometry from shape
completion in two viewing directions. (d) compares the point cloud
from depth image and shape completion: the depth image point
cloud is in blue while shape completion is in red. Although the
completed geometry contains small holes and defects, the accuracy
is sufficient for many manipulation tasks.

A. Experiment Setup and Implementation Details

We use a 7-DOF Kuka IIWA arm mounted with a RGBD
sensor. Both the intrinsic and extrinsic of the camera are
calibrated. We use 8 shoes and 10 mugs to test the manip-
ulation pipeline, as shown in Fig. 3. Note that both shoes
and mugs have substantial intra-category shape variation.
Keypoints same as kPAM [17] are used to define the target
configuration of the shoe and mug. Using the automatic data
collection in Sec. IV-A, we collect 41000 images to train the
shoe networks and 70100 network for mug networks.

The drake library [26], which provides optimization based
motion planners, is used for manipulation planning. The costs
and constraints include object target configuration and colli-
sion avoidance. For this work we use a fixed contact-mode

Fig. 5: Pose estimation can lead to multiple ambiguous alignment.
(a) and (b) show two alignment results by [3] (variation on the
random seed), where we attempt to register the mug template (d)
into the observation (c). Using these pose estimation results for ma-
nipulation planning can lead to undetected physically infeasibility,
as shown in Sec. V-E.

sequence consists of picking, transferring and placing of the
object, as the scheduling of contact-modes is not our focus.
We emphasize that the proposed object representation and
manipulation framework are agnostic to the concrete planner
that solves (2). Many motion planners, either optimization-
based methods [24], [27] or sampling-based approaches [4],
[25], can be plugged in and used.

B. Perception and Comparison with Pose Estimation

In this subsection, we provide results of shape completion
and compare it with the widely-used 6-DOF pose represen-
tation. Fig. 4 shows several completed dense geometry for
representative mugs. The network takes input from images in
Fig. 4 (a) and produces the dense geometries in Fig. 4 (b) and
(c). Fig. 4 (d) compares the point cloud from depth images
and shape completion. Although the completed geometry
contains small holes and defects, the accuracy is sufficient for
many manipulation tasks. Note that the network generalizes
to instances with substantial shape variations.
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TABLE I: Robot Experiment Statistics

Task #Trails #Failure #Planning 
Failure

#Grasp 
Failure

#Execution 
Failure

shoe2shelf 50 14 12 2 0

mug2container 50 10 9 0 1

mug2rack 50 15 10 0 5

TABLE II: False-Negative (Overly Confident, see Sec. V-E) Statistics

Manipulation 
Pipeline #Trails #False Negative 

(Overly Confident)
False Negative 

Rate
6-DoF Pose 50 19 38%

kPAM 50 9 18%
Ours 50 1 2%

On the contrary, pose estimation can be ambiguous and fail
to capture large shape variations. An illustration is provided
in Fig. 5. where the pose estimator in [3] is used to align two
mugs. Using dense geometry from pose estimation can lead
to undetected physically infeasibility, as shown in Sec. V-E.

C. Manipulation Task Specifications

1) Put shoes on a shelf: The first manipulation task is to
put shoes on a shoe shelf, as shown in Fig. 3 (c). The shoe
should be placed in alignment with the shelf. The robot needs
to deal with shoes with different appearance and geometry.

2) Place mugs into a container: The second manipulation
task is to place mugs into a box without colliding with it,
as shown in Fig. 3 (d). The mug should be upright and its
handle should be aligned with the container.

3) Hang mugs on a rack: The last manipulation task is to
hang mugs onto a mug rack by the mug handle, as shown in
Fig. 3 (e). The geometry and position of the mug rack are
available to the robot.

Note that although task 1) and 3) have been performed
in our previous work kPAM [17], it uses various manually-
specified robot trajectories. This manual specification has two
major limitations: 1) it is labor-intensive and can hardly scale
to more complex environments and manipulation tasks; 2)
the pipeline tends to be overly confident, as it cannot detect
physical infeasibility without dense geometry. A comparison
is made in Sec. V-E.

D. Result and Failure Mode

The video demo is on this link. The statistics about three
different tasks is summarized in Table. I. Most failure cases
result from the failure of the motion planner. Since the mo-
tion planner used in this work uses non-convex optimization
internally, it can be trapped in bad local minima without
a good initialization. This issue can be resolved by using
sampling-based planners such as RRT. These planners are
globally optimal but need longer running time.

The grasp failure in Table. I means (1) the robot fails
to grasp the object; or (2) the relative motion between the
gripper and the grasped object is too large. The relative

motion may occur during the grasping, or when the object is
not rigid. This problem could be alleviated by the addition
of an external camera that would allow us to re-perceive
the object after grasping. The execution failure in Table. I
refers to the situations such that (1) the robot makes collision
(despite the perception and planning are successful); or
(2) the object is not placed into the target configuration.
This problem necessitates the execution monitoring described
in [2].

E. Comparison with Alternative Pipelines

In this subsection, we compare our method with two
alternative manipulation pipelines: 1) a manipulation pipeline
based on 6-DOF pose with a geometric template; 2) the
original kPAM [17] pipeline. For the 6-DOF pose based
manipulation pipeline, we use the same pose estimator as the
baseline (Fig. 4) in kPAM [17]: first initialize the alignment
with detected keypoints, then perform ICP fitting between
the observed point cloud and geometric template to get the
6-DOF pose.

Without an accurate characterization of the dense geom-
etry, these alternatives suffer from false-negative (overly-
confidence): the resulted robot trajectory can be physically
infeasible even if the pipeline claims both the perception and
planning succeed. Note that this false-negative is much more
adversarial than the planning failure in Table. I (Sec. V-D).
When the planner fails the pipeline would be stopped and it
is still safe. On the contrary, when false-negative happens the
unsafe trajectory would be sent to the robot for execution,
which is rather dangerous.

Table. II summarizes the false-negative rate of all three
methods on the “mug2container” task. We mark a trail as
“false-negative” if the pipeline claims perception and plan-
ning succeeds, but the resulted trajectory leads to a collision.
The false-negative rates of the two alternatives are much
higher than our method, which implies our method is much
safer. This highlights the benefit of accurate characterization
of dense geometry and the integration of shape completion
into the manipulation pipeline.

VI. CONCLUSION

In this paper, we focus on manipulation planning of a
category of objects, where the robot should move a set of
objects to their target configuration while satisfying physical
feasibility. This is challenging for existing works as they
assume known object templates and 6-DOF pose estimation,
which doesn’t generalize of novel instances within the cat-
egory. Thus, we propose a new hybrid object representa-
tion consists of semantic keypoints and dense geometry as
the interface between the perception module and planning
module. Systematically, we contribute a novel integration of
shape completion with keypoint detector and manipulation
planner. In this way, both the perception and planning
module generalizes to novel instance. Extensive hardware
experiments demonstrate the effectiveness of our method.
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