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Fig. 1: We explore generalizable, perception-to-action robotic manipulation for contact-rich tasks that can automatically handle a category
of objects, despite large intra-category shape variation. Here we demonstrate: (a) wiping a whiteboard using erasers with different shape
and size; (b)-(d) Peg-hole insertion for (b) 0.2 [mm] tight tolerance pegs and holes, (c) LEGO blocks and (d) USB ports. The particular
novelty of these demonstrations is that our method automatically handle objects under significant intra-category shape variation (top row)
without any instance-wise tuning, for each task (a)-(d). The video is on https://sites.google.com/view/kpam2/home.

Abstract— In this paper we explore generalizable, perception-
to-action robotic manipulation for precise, contact-rich tasks. In
particular, we contribute a framework for closed-loop robotic
manipulation that automatically handles a category of objects,
despite potentially unseen object instances and significant intra-
category variations in shape, size and appearance. Previous
approaches typically build a feedback loop on top of a realtime
6-DOF pose estimator. However, representing an object with a
parameterized transformation from a fixed geometric template
does not capture large intra-category shape variation. Hence
we adopt the keypoint-based object representation proposed
in kPAM1 [13] for category-level pick-and-place, and extend
it to closed-loop manipulation policies with contact-rich tasks.
We first augment keypoints with local orientation information.
Using the oriented keypoints, we propose a novel object-centric
action representation in terms of regulating the linear/angular
velocity or force/torque of these oriented keypoints. This for-
mulation is surprisingly versatile – we demonstrate that it
can accomplish contact-rich manipulation tasks that require
precision and dexterity for a category of objects with different
shapes, sizes and appearances, such as peg-hole insertion for
pegs and holes with significant shape variation and tight
clearance. With the proposed object and action representation,
our framework is also agnostic to the robot grasp pose and
initial object configuration, making it flexible for integration
and deployment. The video demonstration and source code are
available on this link.

CSAIL, Massachusetts Institute of Technology, 77 Massachusetts Ave,
Cambridge, USA. Emails: {weigao, russt}@mit.edu.

1kPAM [13] stands for KeyPoint Affordance-based Manipulation.

I. INTRODUCTION

Human can perform precise, reactive and dexterous ma-
nipulation while easily adapting their manipulation skill to
new objects and environments. This remains challenging for
robots despite obvious importance to both industrial and
assistive applications. In this paper, we take a step towards
this goal with emphasis on adaptability: the closed-loop,
perception-to-action manipulation policy should generalize
to a category of objects, with potentially unknown instances
and large intra-category shape variations. Furthermore, the
policy should be able to handle different initial object con-
figurations and robot grasp poses for practical applicability.

While many works address robot grasping of arbitrary
objects [24], [22], these methods are typically customized
to picking up the objects; extending them to other tasks
is not straightforward. Contributions on visuomotor policy
learning exploit neural network policies trained with data-
driven algorithms [11], [25], [29], and many interesting
manipulation behaviours emerge from them. However, how
to efficiently generalize the trained policy to different objects,
camera positions, object initial configurations and/or robot
grasp poses remains an active research problem.

On the other hand, several vision-based closed-loop ma-
nipulation pipelines [9], [8], [17] use 6-DOF pose as the
object representation. They build a feedback loop on top of
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a real-time pose estimator. However, as detailed in Sec. 4 of
kPAM [13], representing an object with a parameterized pose
defined on a fixed geometric template, as these works do,
may not adequately capture large intra-class shape variations.
Thus, kPAM [13] uses 3D keypoints as the object representa-
tion instead of 6-DOF pose for pick-and-place tasks. kPAM
assumes an arbitrary rigid transformation can be applied to
the object. This assumption is not true for contact-rich tasks
in this work: although peg-hole insertion is eventually a rigid
transformation of the peg, it is not easy to “apply” this rigid
transformation.

Contribution. We propose (i) the first manipulation
framework we know that is capable of precise, contact-rich
manipulation while automatically generalizing to a category
of objects. To achieve this, we adopt the keypoint-based ob-
ject representation in kPAM [13] and (ii) augment keypoints
with the local orientation information. Using the oriented
keypoint, (iii) we propose a novel object-centric action
representation as the linear/angular velocity or force/torque
of oriented keypoints. The object and action representations
enable closed-loop policies and contact-rich tasks, despite
significant intra-category shape variations of manipulated
objects. (iv) We further show the proposed object and action
representation lead to various additional benefits, which
includes: the re-targeting to new grasp poses/initial object
configurations, the processing of force/torque measurement
for a category of objects, and significant simplification of
kPAM category-level pick-and-place. (v) We experimentally
validate our framework on a hardware robot with several
challenging, industrially important tasks. Our demo is the
first closed-loop, perception-to-action manipulation we know
that can handle such a diversity of objects and task setups
automatically.

Another desirable property of our framework is the ex-
tendibility. As shown in Sec. III-B, our framework includes a
perception module and a feedback agent, establishes their in-
terfaces but leaves the room for their actual implementation.
Thus, various existing model-based or data-driven algorithms
for perception and control can potentially be plugged into
our framework and automatically generalize to new objects
and task setups, as long as the proposed object and action
representation are used as their input/output.

This paper is organized as follows. Sec. II reviews related
works. Sec. III describes our formulation of the generalized
manipulation framework. Sec. IV shows the significant sim-
plification of the kPAM [13] category-level pick-and-place.
Sec. V presents hardware experiments on several challenging
tasks, specifically showing generalization of our method.

II. RELATED WORKS

A. Object Representation for Closed-Loop Manipulation

Perhaps 6-DOF pose is the most widely used object rep-
resentation for manipulation, thus pose estimation is studied
extensively. Many datasets [26], [27] are annotated with pre-
aligned templates, and pose estimators [26], [20] trained
on them can produce a category-level estimation. Several
teams [9], [8], [17] incorporate realtime pose estimators

into closed-loop manipulation pipelines and show impressive
demos. To generalize these pipelines to a category of objects,
a straightforward approach is combining them with category-
level pose estimators. However, as shown in Sec. 4 of kPAM
[13], pose estimation can be ambiguous under large intra-
category shape variations; a valid 6-DOF trajectory for one
object can lead to physical infeasibility for other instances.
A comparison is made in Sec. V-C.

On the other hand, many works train a visuomotor policy
using data-driven algorithms [11], [10], [25], [29]. The object
representation (visual feature) in these methods is an internal
state of the neural network. Some works exploited techniques
such as autoencoders [11], [25], domain-randomization [2],
[4] and human demonstrations [29], [11]. Compared with
them, the key advantage of our framework is the automatic
generalization to new object instances, camera positions, ob-
ject initial configurations and robot grasp poses. On the other
hand, many of these algorithms can potentially be integrated
into our framework for category-level generalization and that
would be a promising future direction.

B. Robotic Manipulation with Proprioceptive Feedback

There have been impressive works [23], [1], [19] on robot
control about industrially important tasks such as peg-hole
insertion and polishing. By using joint torque sensors and/or
6-DOF force/torque sensors along with other proprioceptive
sensors, the robot can perform impressive tasks, for instance
peg-hole insertion with tight tolerance [23] or polishing an
non-flat surface with smooth trajectories [1]. However, these
methods typically assume perfectly known geometry with
objects (tools) pre-fixed to robots. In this way, inaccuracy
caused by visual perception and grasping is eliminated. For
many tasks these prerequisites can be hard to satisfy.

C. Manipulation at a Category Level

Grasping algorithms [24], [22] enable robots picking up
arbitrary objects, and many of them have achieved im-
pressive generality. Furthermore, several works [13], [18],
[28] study pick and place at a category level. kPAM [13]
proposed to use 3D keypoints as object representation. KETO
[18] extends kPAM with self-supervised keypoint learning.
Form2Fit [28] uses shape descriptors for object placement
in assembly.

In this paper, we focus on generalizable manipulation with
closed-loop feedback for contact-rich scenarios. Using an
open-loop policy, as these previous works [13], [28], [18]
do, typically cannot accomplish these tasks. A comparison
is made in the Sec. V-C.

III. MANIPULATION FRAMEWORK

In this section, we discuss our formulation of the gen-
eralizable manipulation framework. Sec. III-A describes the
approach using a concrete example, and Sec. III-B presents
the general formulation. The subsequent sections discuss the
details and extensions of the general formulation.
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Fig. 3: The object representation using peg-hole insertion as an
example, as shown in (a). We would like the manipulation policy
generalize to (b) a different peg; and (c) a different robot grasp
pose. We adopt the semantic 3D keypoint proposed in kPAM [13]
as a local but task-specific object representation, as shown in (d).
Since the task depends on the local relative orientation between the
peg and hole, we augment keypoints with orientation information,
as if a rigid coordinate is attached to each keypoint shown in (e).

A. Concrete Motivating Example

Consider the task of peg-hole insertion, as illustrated in
Fig. 3 (a). We want to come up with a manipulation policy
that automatically generalizes to a different peg in Fig. 3 (b),
and a different robot grasp pose in Fig. 3 (c).

kPAM [13] proposed to represent the object by a set of
semantic 3D keypoints. The motivation is: keypoints are well
defined within a category while 6-DOF pose cannot capture
large shape variation (see Sec. 4 of [13] for details). We
adopt this idea and choose two keypoints: the ppeg end that
is attached to the peg and the phole top that is attached to the
hole, as shown in Fig. 3 (d). Similar to kPAM, we assume
that we have a keypoint detector, for instance a deep network,
that can produce these specified keypoints in real-time.

These two keypoints provide the location information.
However, the peg-hole insertion task also depends on the
relative orientation of the peg and hole. Thus, we augment
keypoints with orientation information, as if a rigid coordi-
nate is attached to each keypoint, as shown in Fig. 3 (e). For
the peg-hole insertion task, we let the z axis of the ppeg end,
phole top be the axis of the peg and hole, respectively. The x
axis of ppeg end, phole top can be chosen arbitrarily, but when
the x axes of ppeg end and phole top are aligned the peg should
be able to insert into the hole.

The coordinate in Fig. 3 (e) is also used to illustrate 6-
DOF pose in the literature. The key difference between the
oriented keypoint and 6-DOF pose is: the oriented keypoint is
a local but task-specific characterization of the object geome-
try, while pose with geometric template is global. The choice
of a local object representation is inspired by the observation
that in many manipulation tasks, only a local object part
interacts with the environment and is important for the task.
For instance, the ppeg end keypoint only characterizes a local
object part that will be engaged with the hole, and it does
not imply task-irrelevant geometric details such as the handle
grasped by the robot. This locality enables generalization to
novel objects as the unrelated geometric details are ignored.
A more detailed discussion is in Sec. VI.
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Fig. 4: Overview of the object-centric action representation.
With the oriented keypoint in Fig. 3 (e) as the object representation,
the action can be represented as: (a) the desired linear/angular
velocity of an oriented keypoint; or (b) the desired force/torque
of an oriented keypoint. Note that these two action representations
are agnostic to the robot grasp pose and unrelated geometric details
(see Sec. III-A).

As illustrated in Fig. 4, with the oriented keypoint as the
object representation we propose to represent the robot action
as either: 1) the desired linear and angular velocity of the
ppeg end keypoint in Fig. 4 (a); or 2) the desired force/torque
at the ppeg end keypoint in Fig. 4 (b). Importantly, these two
action representations are defined w.r.t only a local part of the
object. Because these actions are not defined w.r.t the robot,
our method is agnostic to the robot grasp pose. Similarly, our
method can handle a variety of objects as actions are also
agnostic to irrelevant geometric details (such as the handle
grasped by the robot). These actions can be mapped to joint
space commands, as described in Sec. III-E.

Suppose we have implemented an agent (which can be
a model-based controller or a neural network policy) using
the object and action representations mentioned above as the
input and output, together with a perception module that
produces the required keypoints in real-time and a joint-
level controller that maps the agent output to joint command,
then the resulting manipulation policy would automatically
generalize to different objects and robot grasp poses, for
instance the ones in Fig. 3 (a), (b) and (c). Even if the policy
doesn’t directly transfer due to unmodeled factors, it would
be a good initialization for many data-driven or model-based
algorithms [10], [11], [21].

B. General Formulation

We can think of a robot as a programmable force/motion
generator [7]. We propose to represent the task-specific
motion profile as the motion of a set of oriented keypoints,
and the force profile as the force/torque w.r.t some keypoints.

Thus, given a category-level manipulation problem we
propose to solve it in the following manner. First the modeler
selects a set of 3D oriented keypoints that capture the task-
specific force/motion profile. Once we have chosen key-
points, the manipulation framework can be factored into: 1)
the perception module that outputs oriented keypoints from
sensory inputs; 2) the agent that takes the perceived keypoints
as input and produces the desired linear/angular velocity or
force/torque of an oriented keypoint as output; 3) the joint-
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Fig. 5: Overview of the manipulation framework. The closed-loop policy consists of 1) a perception module that produces oriented
keypoints in real time; 2) an agent with the state and action space shown in Fig. 3 and Fig. 4, respectively; 3) a joint-space controller
that maps agent outputs to joint-space commands. Note that many different implementations of the perception module and agent can be
used within our framework and the resulting pipeline automatically generalize to new objects and task setups. For many applications the
objects are randomly placed initially. In this scenario, we perform a kinematic pick-and-place to move the object to some desired initial
condition (for instance moving the peg right above the hole), from where the closed-loop policy starts operating (see Sec. IV for details).

space controller that maps the agent output to joint-space
command. An illustration is shown in Fig. 5. The framework
can be extended with force/torque measurements and the
generalization to different object initial configurations, as
shown in Sec. III-C and Sec. III-D. For many applications,
objects are randomly placed initially. In this case, we perform
a kinematic pick-and-place to move the object to some
desired initial configurations, from where the closed-loop
policy starts, as shown in Sec. IV. To make the overall
manipulation operation generalizable, all these components
should work for a category of objects.

It should be emphasized that our framework establishes
the interfaces (input/output) of the perception module and
closed-loop agent, but is agnostic to their implementation.
The only requirement is that for the perception module it
should output oriented keypoints in real time, and for the
agent it should use the state and action space mentioned
above. There are many solutions for both of them. For
instance, in our experiment we combine the wrist-mounted
camera and robot kinematics for keypoint perception (see
Sec. V-B). Alternatively, external cameras or motion capture
markers can also be used for the keypoint tracking. Simi-
larly one might explore various model-based or data-driven
controllers as the feedback agent according to the task in
hand. In particular, many data-driven agents [10], [21], [12]
are agnostic to the state (object) and action representation,
thus can be used directly without modification. Integrating
these perception module and controllers into our framework
would achieve automatic generalization to new objects and
task setups, as long as the proposed object and action
representation are used as the input/output.

C. Force/Torque Measurement

Some robots are equipped with wrist-mounted force/torque
sensors or joint torque sensors. For contact-rich manipulation
tasks, it’s very beneficial to use this information as the input
of the agent. However, the raw output from these sensors
varies with the object geometry and robot grasp pose, as
shown in Fig. 6. As a result, directly feeding these measure-
ments into the agent does not generalize automatically.

The solution to this problem is to transform the measured
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Fig. 6: The processing of force/torque measurement in our
framework. For a wrist-mounted force/torque sensor, its raw mea-
surements fmeasured and τmeasured are not invariant to the object
geometry and grasp pose. Thus, we propose to transform them to an
oriented keypoint (ppeg end here), as the transformed measurement
captures the task-specific force/torque profile. The closed-loop agent
takes the transformed force/torque measurement as input would
generalize w.r.t object geometry.

force/torque to the kinematic frame of an oriented keypoint,
as shown in Fig 6. Using the peg-hole insertion as an
example, we can transform the force/torque measurement
from the robot wrist to the coordinate of ppeg end, as if
a “virtual sensor” is mounted at ppeg end. Comparing with
the raw measurement from a sensor fixed w.r.t the robot,
using a virtual sensor makes the measurement independent
of unrelated object geometry and robot grasp pose.

If the robot is equipped with joint torque sensors, we can
also estimate the force/torque by assuming the robot has no
other contact. Let Jpeg end be the Jacobian that maps robot
joint velocity to the linear/angular velocity of ppeg end, the
force/torque festimated ∈ R6 can be estimated as

festimated = argmin f |JT
peg end f − τexternal|2 (1)

where τexternal is the measured external joint torque. Here we
assume the gravity torque has been compensated.

D. Generalization w.r.t Global Rigid Transformation

Suppose we want to re-target the peg-hole insertion policy
to a hole at a different location. Intuitively, this re-targeting is
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essentially a rigid transformation of the manipulation policy.
Can we somehow “apply” this transformation directly?

In our framework, both the agent input (oriented keypoints
and force/torque w.r.t keypoints) and output (linear/angular
velocity or force/torque of an oriented keypoint) are ex-
pressed in 3D space. In other words, we can apply a
rigid transformation to both the agent input and output.
This property provides generalization w.r.t the global rigid
transformation. Before feeding the input to the agent, we can
transform the input from the world frame to some “nominal
frame”. After agent computation, we can transform its output
back to the world frame. The “nominal frame” can be chosen
arbitrary, for instance in the peg-hole insertion task we can
align it with the initial configuration of phole top. Thus, the
global rigid transformation is transparent to the agent.

On the contrary, many existing works [11], [29], [5] use
input/output in joint space or image space (raw image or
2D keypoints), on which a rigid transformation cannot be
applied. Thus, re-targeting agents in these methods to new
initial configurations and camera poses may need re-training.

E. Joint Space Control

The agent output the desired linear/angular velocity or
force/torque of an oriented keypoint p. An important obser-
vation is: if we assume the object is rigid and grasp is tight
(grasped object is static w.r.t the gripper), then the object can
be regarded as part of the robot and consequently standard
joint-space controllers can be used map these agent outputs
to joint-space commands. This generalizes the “object attach-
ment” in collision-free manipulation planning [3].

With this observation, we discuss several possible joint-
space controller according to robot interfaces. Let Jp be the
Jacobian that maps joint velocity q̇ to linear/angular velocity
of p. A straightforward method to transform the commanded
velocity vp into joint velocity command q̇desired is

q̇desired = argminq̇|Jpq̇− vp|2 + reg(q̇) (2)

where reg(q̇) is a regularizer term. If the robot driver accepts
joint velocity commands, we can send q̇desired to the robot
directly. Similarly, the desired force/torque Fp can also be
transformed into joint space by

τdesired = JT
p Fp +g (3)

where g is the gravitational force in joint space. Here we
ignore the inertia and Coriolis force of the robot.

Since standard joint-space controllers can map the agent
output to joint commands, more sophisticated controllers can
also be used and might provide better tracking performance,
for example the impedance controller in [16]. The detailed
discussion is omitted as they are out of our scope.

IV. PICK-AND-PLACE MANIPULATION

In many applications, objects are randomly placed initially,
potentially in a clutter. For this scenario, we use a two-step
manipulation scheme: the robot first perform a kinematic
pick-and-place to singulate the object and move it to some
desired initial configuration (for instance move the peg right

!&(#-,&

2&(#-,&_(:43

;()&4$% ∈ =>(3)

B
C

D

!'$&&$8_),%&,#

!&$+_),%&,#

E89-_(:43

(a) (b)

!&(#-,&

;()&4$% ∈ =>(3)

(c) (d)

!'$&&$8_),%&,#

Fig. 7: Overview of kPAM [13] pipeline for category-level
pick-and-place and its simplification with oriented keypoints.
kPAM is used as a pre-step of the closed-loop policy in our
framework, as shown in Fig. 5. Using the original mug demo
of kPAM as an example: (a) In kPAM the object is represented
by a set of semantic 3D keypoints. (b) The rigid transformation
Taction, which represents the robot pick-and-place action, is solved
to move pbottom center to the target location ptarget and align the
mug axis with its target vtarget axis. (c) In this paper we propose
to add orientation information to the pbottom center keypoint. (d)
The desired configuration of the mug can be encoded as the target
configuration of pbottom center, and Taction is the relative transform
between pbottom center and its target configuration. Note that both
the original kPAM in (b) and the new formulation in (d) generalize
to mugs with different shape and size. More details are in Sec. IV.

above the hole), then the closed-loop policy described in
Sec. III starts from that initial configuration. We stress that
even with this pick-and-place, the re-targeting to different
initial configuration in Sec. III-D is still necessary, as the
closed-loop policy should generalize to different placement
locations (the hole locations in our example). To make the
entire manipulation operation generalizable, this pick-and-
place step should also works for a category of objects.

kPAM [13] is devoted to this task, as generalizable pick-
and-place is important for many applications. Here we show
how the orientation information of keypoints can be used to
significantly simplify the kPAM pipeline, as shown in Fig. 7.

A. Preliminary: kPAM [13] Pipeline for Pick-and-Place

Here we briefly review the kPAM [13] pipeline. In kPAM,
each object is represented by a set of semantic 3D keypoints
p ∈ R3×N , where N is the number of keypoints. Using the
original mug manipulation demo in kPAM as an example,
we can represent the mug by two keypoints: ptop center and
pbottom center, as shown in Fig. 7 (a). These keypoints are
detected from raw sensory input such as RGBD image.

In kPAM, the robot pick-and-place action is represented
as a rigid transformation Taction ∈ SE(3) on the object, and
keypoints p on that object would be transformed to Taction p∈
R3×N . The object target configuration is defined as a set
of geometric costs/constraints on the transformed keypoint
Taction p. For example, to place the mug upright at some target
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location ptarget, the planned robot action Taction should satisfy

||Taction pbottom center− ptarget||= 0 (4)

||rotation(Taction)vmug axis− (0,0,1)T ||= 0 (5)
where: vmug axis = normalized(ptop center−pbottom center) (6)

Note that the costs/constraints encoding of the object target
configuration remains valid for mugs with different shape and
size. After solving the optimization problem and grasping the
object, we can apply Taction to the object, which is essentially
a rigid transformation on the robot end effector.

B. Simplification of kPAM using Oriented Keypoint

As shown in Fig. 7 (c), we can add orientation informa-
tion to the pbottom center keypoint: the z axis of pbottom center
is aligned with vmug axis in Eq. (6), while the x axis of
pbottom center is chosen randomly since the mug is symmetric.
Then, the target configuration of the mug can be represented
as a target configuration of pbottom center, as shown in Fig. 7
(d). The robot pick-and-place action Taction in Sec. IV-A is
the relative transformation between pbottom center and its target
configuration. Note that this formulation also generalizes to
mugs with different shape, size and topology.

By adding the orientation information to the keypoint, in
many applications (for example all the demos in kPAM [13])
we can avoid setting up costs/constraints and solving an
optimization problem to find Taction. This demonstrate the
benefit of the oriented keypoint as a more informative local
attention mechanism for robot manipulation.

V. RESULTS

We instantiate our framework on a hardware robot and
demonstrate a variety of contact-rich manipulation tasks. The
particular novelty of these demonstrations is that our method
handles objects with large intra-category shape variations
without any instance-wise tuning. An overview of experi-
ments is in Fig. 1, and the detailed setup is in the Appendix.
The video is on https://sites.google.com/view/kpam2/.

A. Task Description

Whiteboard wiping: The robot must detect the whiteboard
eraser, pick it up and use it to erase a small whiteboard,
as shown in Fig. 1 (a). We use two oriented keypoints for
this task: pfront and pcenter as shown in Fig. 8 (a). For a
successful wiping, the x-y plane trajectory of pfront should
be aligned with the edge of the whiteboard, while the z axis
force on pcenter must be regulated to ensure the eraser is in
contact with the whiteboard. We set the nominal z axis force
to be 10 [N] and implement the agent as a linear feedback
controller to track the force on z axis and position on other
dimensions. The robot needs to deal with whiteboard erasers
with significant shapes and sizes variation.

Peg-hole insertion: The robot must detect the peg and
hole, pick the peg up and insert into the hole. We use three
groups of objects: 1) 3D-printed pegs and holes with 0.2
[mm] clearance in Fig. 1 (b); 2) LEGO blocks in Fig. 1 (c);
3) USB drive and ports in Fig. 1 (d). The same code is used
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Fig. 8: The specified keypoints used in our experiment. (a)
Two keypoints are detected for the whiteboard wiping task. (b)
Two keypoints are detected for the peg, one keypoint is detected
for the hole. For the manipulation of LEGO blocks in Fig. 1 (c), the
ppeg top for another LEGO block is used as phole top. Please refer
to Sec. V-A for more details.

(a) (b)

Fig. 9: Typical failure modes. (a) Grasp failure. (b) The keypoint
perception error is too large such that the closed-loop agent can’t
correct it with feedback.

for all three object groups. Due to the graspability limitation
of the USB drive, we pre-fix it to the robot gripper, while the
USB port as the “hole” is detected from visual perception.

We generally follow the peg-hole insertion framework
in Fig. 7 of [23] to implement the agent. Different from
[23], we use keypoints instead of the peg pose, the keypoint
linear/angular velocity as the action representation instead of
peg linear/angular velocity, and the transformed force/torque
measurement (Sec. III-C) instead of raw data, for category-
level generalization. As lead-through demonstration in [23]
is infeasible on our robot, we use a compliance controller
(Sec. 2 in [15]) instead of the GMM regressor in Eq.
(17) of [23]. Suggested by [23], we use periodic switching
between closed-loop and feedforward control (the direct and
indirect control in [23]), as a random perturbation proven to
be helpful in their experiment.

We also try to learn an agent by imitating successful trails,
following almost exactly the setup of [23]. The learned agent
works on all three peg-hole categories (printed peg-hole,
LEGO and USB), but it doesn’t outperform the original
controller. Later we found it is because the learned agent
almost reproduces the original controller. We expect learning
from human demonstration would be a promising future
direction.

B. Perception Implementation

We use robot kinematics to track oriented keypoints in
real-time and use it as the input of the closed-loop agent.
Suppose we know oriented keypoints relative to the robot
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gripper, then when robot moves we can compute oriented
keypoints in the world frame using the forward kinematics.

We use a robot wrist-mounted camera to perform object
detection, keypoint detection and grasp planning with the
method in kPAM [13]. Given visual perception results, we
execute robot grasping and compute the keypoints expressed
in the robot gripper frame, using the keypoints in the
world frame (from camera perception) and the robot gripper
pose (from robot kinematics). After grasping, we use robot
kinematics for real-time keypoint tracking and feed the result
into the closed-loop agent, as mentioned above. Please refer
to the Appendix for more perception implementation details.

We stress that our framework is not restricted to this
perception implementation, although it is easy to realize and
good enough for our experiment. It is an interesting direction
to test other keypoint trackers, for instance ones based on
external cameras or motion-tracking markers.

C. Experimental Result

The failure rates of our method are summarized in Table I.
For the wiping task, we mark a trial as failure if 1) the
discrepancy between pfront with the whiteboard edge is larger
than 2 [cm]; or 2) the z axis force on pcenter is less than 5 [N].
For the peg-hole insertion task, we mark a trial as a failure
if the peg is not inserted into the hole. Our method is first
compared with an open-loop baseline similiar to kPAM [13],
Form2Fit [28] and KETO [18]: for wiping task the open-loop
policy replays the pfront trajectory, for peg-hole insertion the
open-loop policy always commands a downward motion. Our
method has a much lower failure rate, as shown in Table. I.

For the wiping task, it is crucial to measure and regulate
the contact force in a closed-loop manner else the eraser
would not touch the whiteboard. Thus, an open-loop policy
typically cannot successfully erase texts on the whiteboard.

For the peg-hole insertion task, the typical accuracy of
the visual keypoint detection is about 5 [mm] when the
distance from the camera to objects is about 80 [cm]. The
perception error is much larger than the clearance (the
clearance is 0.2 [mm] for printed pegs and holes, almost zero
for LEGO blocks and USB ports), which requires the agent to
correct itself using closed-loop feedback with the measured
keypoints and force/torque. For the printed pegs and holes,
the agent can tolerate some perception error (please refer to
appendix for more details), thus the failure rate is decent and
much lower than the open-loop kinematic policy. However, if
the perception error is too large the feedback agent wouldn’t
be able to correct it, as shown in Fig. 9 (b). The LEGO blocks
have large chamfers, which makes the insertion much easier.

On the other hand, the USB port is much more demanding
on the perception accuracy (roughly 3 [mm] error on the
shorter side of USB would result in failure). We use a two-
step perception scheme: the first coarse step roughly locates
the object; then we move the wrist-mount camera closer to
the object and perform the second, more accurate perception.
In this way, we can reduce the perception error to 2 [mm].

To demonstrate the superiority of our keypoint formulation
over pose-based methods, we implement a pose estimator and

TABLE I: #Failure/#Trial (Failure Rate) Comparison

Task Kinematic 
Failure Rate Note on Failure

Whiteboard
wiping

10/25 (40%)
Eraser collide into table;
Eraser not aligned with 

whiteboard edge

Printed peg-hole 25/45 (55%) Peg collide into hole;
No overlapping between peg and 
hole (alignment error too large)

LEGO block 9/25  (36%)

USB port 17/20 (85%)

Task Our Method Open-Loop Baseline
Whiteboard wiping 1/25 (4%) 16/20 (80%)

Printed peg-hole 12/45 (26%) 19/20 (95%)

LEGO block 2/25 (8%) 7/20 (35%)

USB port 9/20 (45%) 20/20 (100%)

TABLE II: Summary for 6DOF-Pose Baseline

Task Failure Rate Note on Failure

Whiteboard
wiping

10/25 (40%)
Eraser collide into table;
Eraser not aligned with 

whiteboard edge

Printed peg-hole 25/45 (55%) Peg collide into hole;
No overlapping between peg and 
hole (alignment error too large)

LEGO block 9/25  (36%)

USB port 17/20 (85%)

Task Our Method Open-Loop Baseline
Whiteboard wiping 1/25 (4%) 16/20 (80%)

Printed peg-hole 12/45 (26%) 19/20 (95%)

LEGO block 2/25 (8%) 7/20 (35%)

USB port 9/20 (45%) 20/20 (100%)

test it on our setups. The pose estimator is the same as the
baseline (Fig. 4) in kPAM [6]: first initialize the alignment
with detected keypoints, then perform ICP fitting between
the observed point cloud and geometric template to get the
6-DOF pose. As demonstrated in kPAM (Fig. 5 of kPAM),
a valid 6-DOF pose trajectory for one object can lead to
physical infeasibility for another instance. For this reason,
many trials would fail kinematically and some of them can
be dangerous and require safety stop, as shown in Table II.
Our approach has a much better performance.

VI. DISCUSSION AND COMPARISON

In this section we compare the oriented keypoint in Sec. III
with existing object representations for robotic manipulation.

As mentioned in Sec. III-A, the keypoint is a local but
task-specific representation of the object. The motivation is
that for many robot manipulation tasks only a local object
part is important. Because of the locality, there might be
multiple keypoints on an object for some tasks, for instance
two keypoints are used in the whiteboard wiping task shown
in Fig. 8. On the contrary, the mapping between the object
and the 6-DOF pose is one-to-one.

On the other hand, 6-DOF pose is defined as a transfor-
mation on a template model. Pose estimators typically rely
on the geometric matching between the observation (image,
point cloud) and the template, where the matching is used
either directly or as ground-truth for network training. Thus,
6-DOF pose with geometric template is a global and task-
agnostic representation of the object geometry. However for
a category of objects with different instances, the geometric
matching can be ambiguous, as shown in [13].

For manipulating one object with perfectly known geom-
etry, the 6-DOF pose and keypoint (with or without orienta-
tion) are equivalent: pose can be estimated given detected
keypoints; inversely we can get keypoints from pose, by
annotating keypoints on the template and transforming those
keypoints with an estimated pose. Thus, keypoints can con-
tain more information than pose. Existing agents that succeed
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with 6-DOF pose on a specific object, should perform equally
well or better with keypoints on that object. Moreover,
keypoints have the benefit of category-level generalization,
making it a promising alternative over 6-DOF pose.

On the other hand, end-to-end methods [11], [14] typically
use implicit object representations as internal states of the
neural network. Compare with them, the oriented keypoint
provides the prior knowledge about which part of the object
is task-relevant. Our framework automatically handles new
object geometry because task-irrelevant object parts are ig-
nored. This prior knowledge is not available for a end-to-end
method. They must discover it from the training data with
many different objects, which can be expensive in practice.

Although 3D keypoints in [13] are not oriented, the local
orientation is implicitly used to encode the object target
configuration in their pipeline, for instance the “put mugs on
a table” task (Fig. 6). This highlights the importance of local
orientation and the benefit to incorporate them explicitly.

VII. LIMITATION AND FUTURE WORK

Our method built upon the sparse keypoint representation
cannot handle tasks that require dense object geometry. For
example if the peg is larger than the hole, then our framework
cannot realize the task is impossible. Other tasks that require
dense geometry include collision-free trajectory planning. To
resolve it, a promising method is to exploit shape completion
algorithm to obtain the dense geometry of objects.

We assume the object is static w.r.t the gripper. This
essentially restricts the applied force on the object: the
applied force should be balanced by contact forces that lie in
the static friction cones. To mitigate this, the simplest method
is to plan a stable, tight grasp. Another possible way is using
external cameras for perception, instead of the wrist-mount
camera in our experiment. In this way we can detect the
relative motion between the gripper and object.

Benefit from the flexibility of our framework, it can
be integrated with many other perception modules and
feedback agents. For example, we might consider human
demonstration instead of imitating a hand-written policy in
our experiment, or explore other camera setups and neural
network structures. We believe these are promising future
directions to explore.

VIII. CONCLUSION

We present a novel framework for closed-loop, perception-
to-action manipulation that handles a category of objects, de-
spite large intra-category shape variation. To achieve this, we
introduce the oriented keypoint as an object representation
for manipulation, and purpose a novel action representation
on top of that. Moreover, our framework is agnostic to the
robot grasp pose and object initial configuration, makes it
flexible for integration and deployment. Extensive hardware
experiments demonstrate the effectiveness of our method.
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