Efficient Incremental Penetration Depth Estimation between Convex Geometries Supplemental Document

Wei Gao

I. DERIVATION OF THE SQP PROCEDURE

As explained in Section III.A of the original paper, we investigate the following optimization problem:

$$
\min_{v \in R^n} ||v||_2
$$

subject to: $v \in \text{boundary}(\mathscr{E})$ (1)

where $\mathscr E$ is also a closed convex set in R^n that contains the origin. Different from Sec. III.C of the paper, we assume an explicit representation of $\mathscr E$ is available, such that we can compute a supporting hyperplane for each point $v \in$ boundary(\mathscr{E}). As a result, this PD algorithm is "conceptual" and will be instantiated in Sec. III.C of the original paper.

The domain for the decision variable in Problem [\(1\)](#page-0-0) only includes the boundary of $\mathscr E$, as shown in Fig. [1](#page-0-1) (a). As the convex set $\mathscr E$ contains the origin, we can enlarge the input domain to everywhere except the inner of $\mathscr E$ and rewrite the optimization as

$$
\min_{v \in R^n} ||v||_2
$$

subject to: $v \in (R^n \setminus \text{inner}(\mathscr{E}))$ (2)

where $R^n \setminus \text{inner}(\mathscr{E})$ is the complement of inner(\mathscr{E}), an illustration if shown in Fig [1](#page-0-1) (b).

We would like to solve Problem [2](#page-0-2) using a modified SQP procedure [2], [1]. SQP operates by alternating between locally convexifying the costs/constraints and solving the QP sub-problem. For Problem [2,](#page-0-2) the cost function is the L2-norm of the decision variable *v*, which is convex and quadratic. Thus, we only need to linearize the non-convex inequality constraint in Problem [2.](#page-0-2)

Suppose for some SQP iteration k , the point v_k is on the boundary of $\mathscr E$. The local linearization of the inequality constraint at v_k is actually a half-space separated by the supporting hyperplane at v_k . An illustration is shown in Fig [1](#page-0-1) (c). Obviously, the half-space does not contain the origin. Moreover, the QP sub-problem becomes finding the minimum distance point in the half-space to the origin. Usually, QP sub-problems in a SQP procedure require a trust region to ensure decreasing cost. This is unnecessary for our setup as Problem [2](#page-0-2) is a different-of-convex problem. Let *y^k* be the projection of origin onto the half-space, which is also the optimal solution to the QP sub-problem.

For a point y_k that is not on the boundary of the \mathscr{E} , the original SQP procedure require a similar local linearization of the inequality constraint at *y^k* and subsequent QP subproblem. This linearization is also a half space whose separating plane passes through y_k . We modify the SQP procedure to replace QP sub-problem by projecting the *y^k*

Algorithm 1 SQP for Problem. [2](#page-0-2)

Require: $\mathscr E$ that supports compute supporting hyperplane(\cdot) **Require:** $v_{\text{init}} \in \text{boundary}(\mathscr{E})$ $v_0 \leftarrow v_{\text{init}}$

while $k = 0, 1, 2, ...$ **do**

 $n_{\text{plane } k} \leftarrow$ compute_supporting_hyperplane(\mathscr{E}, v_k) \triangleright Plane defined by normal $n_{\text{plane},k}$ and a point v_k on it

 $y_k \leftarrow \text{project_point_to_plane}(O, \text{ Plane}(\nu_k, n_{\text{plane},k}))$

 v_{k+1} = boundary intersection(O to y_k , boundary(\mathcal{E}))

end while

(b)

Fig. 1: Formulation of the SQP problem. (a) shows the original optimization in Problem [1](#page-0-0) whose domain is the boundary; (b) shows the formulation in Problem [2](#page-0-2) with extended domain; (c) shows the convex relaxation of the optimization problem at a point *v^k* .

(c)

back to the boundary of $\mathscr E$ at v_{k+1} , and the overall PD algorithm is shown in Algorithm [1.](#page-0-3) We use this modification because Algorithm [1](#page-0-3) is a conceptual algorithm that will be instantiated using MPR subroutine in Section III.B of the original paper. It is easy to prove the minimum penetration distance estimated by Algorithm [1](#page-0-3) converges to a local optimal solution: for each iteration we have $|v_{k+1}| \leq |y_k| \leq$ $|v_k|$ and the estimated minimum distance does not increase.

II. CONVERGENCE PROOF OF THE PROPOSED ALGORITHM

Build upon Algorithm [1,](#page-0-3) we propose a new PD algorithm in Section III.C of the original paper by introducing a MPR subroutine instantiation and a shortcut mechanism, as shown in the Algorithm 4 of the original paper. The new PD algorithm use penetration direction *d* as the decision variable, and $d =$ normalized(*v*). The penetration point *v* is computed using the MPR subroutine.

The convergence properties of the new PD algorithm in Section III.C of the original paper is almost the same as the Algorithm [1:](#page-0-3) in each iteration *k* that we update the direction d_k to d_{k+1} , the corresponded penetration point v_k satisfies $|v_{k+1}| \leq |v_k|$ following the shortcut mechanism in Section III.C. As a result, the minimum penetration distance estimated by our PD algorithm converges to a local optimal solution.

REFERENCES

- [1] S. Boyd, S. P. Boyd, and L. Vandenberghe. *Convex optimization*. Cambridge university press, 2004.
- [2] P. E. Gill, W. Murray, and M. A. Saunders. Snopt: An sqp algorithm for large-scale constrained optimization. *SIAM review*, 47(1):99–131, 2005.