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I. DERIVATION OF THE SQP PROCEDURE

As explained in Section III.A of the original paper, we
investigate the following optimization problem:

min v∈Rn ||v||2
subject to: v ∈ boundary(E )

(1)

where E is also a closed convex set in Rn that contains the
origin. Different from Sec. III.C of the paper, we assume
an explicit representation of E is available, such that we
can compute a supporting hyperplane for each point v ∈
boundary(E ). As a result, this PD algorithm is “conceptual”
and will be instantiated in Sec. III.C of the original paper.

The domain for the decision variable in Problem (1) only
includes the boundary of E , as shown in Fig. 1 (a). As the
convex set E contains the origin, we can enlarge the input
domain to everywhere except the inner of E and rewrite the
optimization as

min v∈Rn ||v||2
subject to: v ∈ (Rn \ inner(E ))

(2)

where Rn \ inner(E ) is the complement of inner(E ), an
illustration if shown in Fig 1 (b).

We would like to solve Problem 2 using a modified SQP
procedure [2], [1]. SQP operates by alternating between
locally convexifying the costs/constraints and solving the QP
sub-problem. For Problem 2, the cost function is the L2-norm
of the decision variable v, which is convex and quadratic.
Thus, we only need to linearize the non-convex inequality
constraint in Problem 2.

Suppose for some SQP iteration k, the point vk is on
the boundary of E . The local linearization of the inequality
constraint at vk is actually a half-space separated by the
supporting hyperplane at vk. An illustration is shown in
Fig 1 (c). Obviously, the half-space does not contain the
origin. Moreover, the QP sub-problem becomes finding the
minimum distance point in the half-space to the origin.
Usually, QP sub-problems in a SQP procedure require a trust
region to ensure decreasing cost. This is unnecessary for our
setup as Problem 2 is a different-of-convex problem. Let yk
be the projection of origin onto the half-space, which is also
the optimal solution to the QP sub-problem.

For a point yk that is not on the boundary of the E , the
original SQP procedure require a similar local linearization
of the inequality constraint at yk and subsequent QP sub-
problem. This linearization is also a half space whose
separating plane passes through yk. We modify the SQP
procedure to replace QP sub-problem by projecting the yk

Algorithm 1 SQP for Problem. 2

Require: E that supports compute supporting hyperplane(·)
Require: vinit ∈ boundary(E )

v0← vinit
while k = 0,1,2, ... do

nplane k← compute supporting hyperplane(E , vk)
▷ Plane defined by normal nplane k and a point vk on it
yk← project point to plane(O, Plane(vk, nplane k))
vk+1 = boundary intersection(O to yk, boundary(E ))

end while
return vk
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Fig. 1: Formulation of the SQP problem. (a) shows the original
optimization in Problem 1 whose domain is the boundary; (b) shows
the formulation in Problem 2 with extended domain; (c) shows the
convex relaxation of the optimization problem at a point vk.

back to the boundary of E at vk+1, and the overall PD
algorithm is shown in Algorithm 1. We use this modification
because Algorithm 1 is a conceptual algorithm that will be
instantiated using MPR subroutine in Section III.B of the
original paper. It is easy to prove the minimum penetration
distance estimated by Algorithm 1 converges to a local
optimal solution: for each iteration we have |vk+1| ≤ |yk| ≤
|vk| and the estimated minimum distance does not increase.

II. CONVERGENCE PROOF OF THE PROPOSED
ALGORITHM

Build upon Algorithm 1, we propose a new PD algorithm
in Section III.C of the original paper by introducing a MPR
subroutine instantiation and a shortcut mechanism, as shown
in the Algorithm 4 of the original paper. The new PD
algorithm use penetration direction d as the decision variable,



and d = normalized(v). The penetration point v is computed
using the MPR subroutine.

The convergence properties of the new PD algorithm in
Section III.C of the original paper is almost the same as
the Algorithm 1: in each iteration k that we update the
direction dk to dk+1, the corresponded penetration point vk
satisfies |vk+1| ≤ |vk| following the shortcut mechanism in
Section III.C. As a result, the minimum penetration distance
estimated by our PD algorithm converges to a local optimal
solution.
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