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Abstract— Penetration depth (PD) is essential for robotics due
to its extensive applications in dynamic simulation, motion plan-
ning, haptic rendering, etc. The Expanding Polytope Algorithm
(EPA) is the de facto standard for this problem, which estimates
PD by expanding an inner polyhedral approximation of an im-
plicit set. In this paper, we propose a novel optimization-based
algorithm that incrementally estimates minimum penetration
depth and its direction. One major advantage of our method
is the capability to be warm-started by leveraging the spatial
and temporal coherence. This coherence emerges naturally in
many robotic applications (e.g., the temporal coherence between
adjacent simulation time knots). As a result, our algorithm
achieves substantial speedup — we demonstrate it is 5-30x
faster than EPA on several benchmarks. Moreover, our ap-
proach is built upon the same implicit geometry representation
as EPA, which enables easy integration into existing software
stacks. The code and supplemental document are available on:
https://github.com/weigao95/mind-fcl.

I. INTRODUCTION

Penetration depth (PD) is a distance measure that char-
acterizes how much two overlapping shapes penetrate into
each other. PD is of significant importance to various robotic
applications. For instance, 1) in dynamic simulations, PD is
used to calculate the contact force [24], [16], [22] in almost
all rigid body contact models; 2) in motion planning, many
planners [23], [20], [10] are designed to regulate (minimize)
the PD to alleviate and avoid collisions; and 3) in haptic
rendering [7], [14], [12], PD is used to resolve the inter-
actions between objects. PD estimation is usually coupled
with binary collision detection, which provides overlapping
shape pairs as its input [2], [19]. A common strategy to
accelerate collision detection and PD estimation is to split
the computation into two phases [4]. The first is the “broad
phase” which eliminates shape pairs that are too far away.
The second “narrow phase” checks if the shape pairs passed
the broad phase are really colliding, and computes the PD
for the colliding pairs. This paper focuses on PD estimation
in the narrow phase, as detailed below.

Problem Formulation. We investigate two closed convex
shapes A1,A2 ⊂ Rn. Usually, the space dimension n = 2 or
n = 3, corresponds to 2-dimensional (2D) or 3-dimensional
(3D) setups. Non-convex shapes can be handled by com-
puting their convex-hull [15] or performing convex decom-
position [13]. Two shapes A1,A2 collide with each other if
A1∩A2 ̸= /0. For two shapes A1,A2 that are in collision, the

Mech-Mind Robotics. Email: gaowei19951004@hotmail.com

𝐴! 𝐴"

PD(𝐴!, 𝐴")

𝑂

PD(𝐴!, 𝐴")

𝑂
Minkowski
Difference

𝑂Minkowski
Difference

𝐴! 𝐴"

𝑂

(a) (b)

Fig. 1: An illustration of penetration depth and Minkowski Dif-
ference. (a) For two colliding shapes, their Minkowski Difference
contains the origin O. The penetration depth PD(A1,A2) is also
the minimum distance from the origin O to the boundary of their
Minkowski Difference. (b) For two non-overlapping shapes, the
origin O is outside their Minkowski Difference and PD is undefined.

penetration depth PD(A1,A2) is defined as

PD(A1,A2) = min d1,2∈Rn ||d1,2||2
subject to: interior(A1 +d1,2)∩A2 = /0

(1)

where ∥ · ∥2 is L2-norm; A1 + d1,2 is the set obtained by
applying a translation d1,2 ∈ Rn to each point in A1. The dis-
placement d∗1,2 ∈Rn that is an optimal solution to Problem (1)
is denoted as minimum penetration displacement. The unit
vector n∗1,2 = normalized(d∗1,2) is usually denoted as minimum
penetration direction. Obviously, d∗1,2 = n∗1,2 × PD(A1,A2).
An illustration is shown in Fig 1.

Related Works. The most widely used method for PD
estimation is the EPA [25], which is coupled with the Gilbert-
Johnson-Keerthi (GJK) algorithm [6] for collision detection.
Both GJK and EPA operate on Minkowski Difference [6],
which is a convex set constructed from original shapes A1
and A2 (a detailed explanation of Minkowski Difference
is in Sec. II). Intuitively, EPA algorithm estimates the
PD by building an inner polyhedral approximation of the
Minkowski Difference. EPA algorithm requires a tetrahedron
inscribed to the Minkowski Difference as the input, which
is produced by GJK algorithm for each colliding shape pair.
Built upon the Minkowski Difference formulation, GJK and
EPA can handle arbitrary convex shapes such as convex
polyhedra and basic primitives (i.e., spheres, boxes etc.).
These desirable properties make EPA the de facto standard
for PD estimation. However, an accurate PD estimation using
EPA may require an inner polyhedral approximation with a
lot of vertices and faces. In this paper, we take a different
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approach that incrementally estimates PD by solving an
optimization problem. A key advantage of our method is
to leverage spatial and temporal coherence in many robotic
applications to warm-start the optimization. For instance, in
dynamic simulation the object pairs tend to have very similar
penetration direction and depth in consecutive time steps.
Initializing our incremental PD algorithm by the information
of the previous time knot can lead to substantial speed-up.

The idea of incrementally estimating the PD has also
been explored in DEEP [11], which seeks a locally optimal
solution of PD by walking on vertices of Minkowski Differ-
ence. Compared with [11], our method can handle arbitrary
convex shapes, while [11] is restricted to convex polyhedra.
Specifically, the proposed algorithm is capable of penetration
computation between two primitive shapes or a primitive-
polyhedra pair, while [11] does not support it. Moreover,
experimental results in Sec. IV demonstrate the proposed
method is about 2x faster than [11]. In the broader context
of penetration computation between non-convex geometries,
several contributions [9], [21], [17] proposed to iteratively
compute the tangent space of Minkowski Difference and
project onto it, which is conceptually related to our method.
Compared with them, the key technical distinction of our
method is: 1) a novel method to construct the tangent space
of Minkowski Difference for convex geometries (Sec. III-B);
and 2) an early termination mechanism to reduce the itera-
tions and improve the performance (Sec. III-C). Non-convex
penetration algorithms [9], [21], [17] and convex ones [25],
[11] have different trade-off on problem complexity and
computational performance. These two types of algorithms
complement each other in practical applications. Researchers
have also proposed to explicitly construct the Minkowski
Difference [3] for PD estimation. However, the construction
procedures tend to be computationally expensive.

Contributions. Built upon the seminal works [6], [25],
[8], this paper proposes a novel incremental PD estimation
algorithm between general convex shapes. In particular,

• We formulate PD estimation as a “Difference-of-
Convex” problem, which is usually solved by Sequential
Quadratic Programming (SQP) [1]. The major challenge
of applying SQP to PD estimation is the implicit ge-
ometry representation (the Minkowski Difference and
Support Function explained in Sec. II-B). To address it,
we propose a novel instantiation of SQP that utilizes
a modified Minkowski Portal Refinement (MPR) algo-
rithm [8] as a subroutine.

• We propose a novel shortcut mechanism that reduces the
computation of the vanilla SQP procedure for PD esti-
mation. Furthermore, we demonstrate that the algorithm
can still converge to locally optimal solutions despite the
shortcut mechanism.

• We experimentally evaluate our method on several
benchmarks. Our method demonstrates a 5-30x speedup
over EPA at a comparable accuracy.

• Our method can be easily integrated into existing soft-
ware stacks and we provide an open-source implemen-
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Fig. 2: An illustration of a modified MPR algorithm to compute
the intersection point (the vintersect in (a)) of an origin ray with the
boundary of the Minkowski Difference. The algorithm takes the ray
direction dray as the input. In each iteration, the algorithm maintains
and updates a “portal”, which is a segment for 2D (or a triangle for
3D) that is inscribed to the Minkowski Difference. The illustrations
from (a) to (c) show one MPR iteration, as the portal (v1,v2) in (a)
is updated to a new portal (v2,vcandidate) in (c).

tation to facilitate its usage in robotic applications.
This paper is organized as follows: in Sec. II presents the

preliminaries. Sec. III explains the PD algorithm. Sec. IV
shows the results. Sec. V concludes.

II. PRELIMINARY

A. Minkowski Difference and Penetration Depth

As mentioned in Sec. I, we investigate two closed, convex
shapes A1,A2 ⊂ Rn. Usually the dimension n = 2 or n = 3.
The Minkowski Difference D1,2 for A1 and A2 is defined as

D1,2 = A1−A2 = {v = v1− v2|v1 ∈ A1,v2 ∈ A2} (2)

The following properties hold for D1,2 as proved in [25]:
• D1,2 is a closed convex set.
• A1 and A2 overlap if the origin O ∈D1,2.
• For two overlapping shapes A1 and A2, their penetration

depth PD(A1,A2) defined in Problem (1) corresponds to
the minimum distance from O to the boundary of D1,2.

An illustration is provided in Fig. 1. Using these properties,
we can reformulate Problem (1) in Sec. I into:

PD(A1,A2) = min v∈Rn ||v||2
subject to: v ∈ boundary(D1,2)

(3)

Let the point v∗ on the boundary of D1,2 be one optimal solu-
tion to Problem (3). The minimum penetration displacement
d∗1,2 in Sec. I can be computed as d∗1,2 =−v∗ (in other words
interior(A1− v∗)∩A2 = /0). The minimum penetration direc-
tion in Sec. I can be computed as n∗1,2 = normalized(−v∗).

B. Support Function for Convex Shapes

GJK/EPA [6], [25] uses an implicit, functional geometry
representation called support function. For a given convex
set A, we can define its support function suppA(·) as

suppA(d) = argmin x∈A dot(x,d) ⊂ A (4)



where dot(·, ·) is dot product, and d is a unit vector de-
noted as support direction. Intuitively, the support function
computes points in A that are the farthest along the support
direction. For some d, there can be more than one point
that satisfies Equ. (4). Following existing works, we assume
suppA(·) produces one point for each d, which can be arbi-
trarily selected from points that satisfy Equ. (4). The support
function is closely related to the supporting hyperplane [1]
of a convex set. For a given direction d and v = suppA(d),
the plane {x|dot(d,x− v) = 0} is a supporting plane for the
convex shape A at the point v ∈ A.

As shown in [6], we can use suppA1
(·) and suppA2

(·) of
two shapes A1, A2 to construct the support function of their
Minkowski Difference suppD1,2

(·). In particular,

suppD1,2
(d) = suppA1

(d)− suppA2
(−d) (5)

In other words, we can get a point from suppD1,2
(d) using

suppA1
(d) and suppA2

(−d). Algorithms in this work will ac-
cess the Minkowski Difference through its support function.

C. Origin Ray and Minkowski Portal Refinement

We investigate two overlapping shapes A1 and A2, thus
their Minkowski Difference D1,2 contains the origin. Given
a direction dray as the input, we define the origin ray that
starts from the origin O and extends along dray as

origin ray(dray) = {x|x = t dray, for t ≥ 0} (6)

The MPR [8] algorithm was originally proposed for binary
collision checking. In this subsection, we present a modified
MPR that computes the intersection point of the origin ray
with the boundary of D1,2:

vintersect(dray) = origin ray(dray)∩boundary(D1,2) (7)

As illustrated in Fig. 2 (a), MPR maintains and updates
a portal, which is a n-simplex inscribed to the Minkowski
Difference D1,2 ⊂ Rn that intersects with the origin ray.
For 2D setup, the portal is a segment inscribed to D1,2.
For example, the segment (v1,v2) in Fig. 2 (a) is a portal
that intersects the origin ray at p. In 3D setup, the portal
is a triangle. The portal is initialized using a ‘find portal”
procedure [8], as shown in Algorithm 1.

In each iteration, MPR computes the portal normal dportal.
Then, the support function suppA(·) is invoked with dportal
to get a point vcandidate. As the origin ray intersects with
portal (v1,v2), it must intersect with one of the segment
(v1,vcandidate) and (v2,vcandidate). The intersecting one would
be the new portal for the next iteration. This is the up-
date portal in Algorithm 1. The iterations continue until p is
a good approximation of vintersect, up to some tolerance ∆ in
the portal normal direction, as shown in Fig. 2.

III. PENETRATION DEPTH ESTIMATION ALGORITHM

As shown in Sec. II, PD estimation can be expressed as

min v∈Rn ||v||2
subject to: v ∈ boundary(D)

(8)

Algorithm 1 MPR for Origin Ray Intersection in Sec. II-C

Require: D1,2 with support function suppD1,2
(·)

Require: ray direction dray
Require: tolerance ∆

portal0← find portal(D1,2)
while k = 0,1,2, ... do

dportal k← portal normal(portalk)
vcandidate← suppD1,2

(portalk)
pk← intersect(origin ray(dray),dportal k)
▷ A plane is defined by its normal and one point on it
qk← intersect(origin ray(dray),Plane(dportal k,vcandidate))
if |dot(qk− pk,normalized(dportal k))| ≤ ∆ then

return (pk, vcandidate, dportal k)
end if
portalk+1← update portal(portalk, vcandidate)

end while

where D is the Minkowski Difference that contains the
origin. The subscript of D1,2 is dropped for notational
simplicity. As shown in Sec. II-A, we can only access the
convex set D through its support function suppD (·). This
implicit geometric representation implies:

1) For a given point v ∈ boundary(D), it is hard to
compute a supporting hyperplane of D (or equivalently
the hyperplane normal) that passes through v. This op-
eration is required for many optimization procedures,
such as the SQP in Sec. III-A.

2) The support function suppD (·) is actually an “inverse”
of the operation in 1): for a given normal direction
d, we can compute a point v = suppD (d). This point,
combined with the normal d, is able to define a
supporting hyperplane for D .

In this section we will address this challenge and propose an
optimization-based PD estimation algorithm.

To make a clear presentation, we first introduce two
“conceptual” algorithms in Sec. III-A and III-B. The first
one highlights the SQP procedure assuming we can compute
supporting hyperplanes for v ∈ boundary(D). As mentioned
above, this assumption is not true for our problem. To address
it, we propose a novel instantiation of SQP that utilizes a
modified MPR algorithm as a subroutine. This is the second
“conceptual” algorithm in Sec. III-B. Finally, we present
the actual PD algorithm with a shortcut mechanism, which
reduces the computation and leads to substantial speed-up.

A. Formulation as a Difference-of-Convex Problem

In this subsection, we investigate the following optimiza-
tion problem, which is very similar to Problem (8):

min v∈Rn ||v||2
subject to: v ∈ boundary(E )

(9)

where E is also a closed convex set in Rn that contains the
origin. Different from Problem (8), we assume an explicit
representation of E is available, such that we can compute
a supporting hyperplane for each point v ∈ boundary(E ).



Algorithm 2 SQP for Problem 10

Require: E that supports compute supporting hyperplane(·)
Require: vinit ∈ boundary(E )

v0← vinit
while k = 0,1,2, ... do

nplane k← compute supporting hyperplane(E , vk)
▷ Plane defined by normal nplane k and a point vk on it
zk← project origin to plane(Plane(vk, nplane k))
vk+1 = boundary intersection(O to zk, boundary(E ))

end while
return vk

Since this assumption does not hold for the Minkowski
Difference D , the PD algorithm presented in this subsection
is “conceptual” and will be instantiated in Sec. III-B.

As a concrete example, the convex shape E might be
represented as the level-set of a continuous convex function
g(v). In other words, E = {v|g(v)≤ 0} and the boundary is
{v|g(v) = 0}. For a point v ∈ boundary(E ), we can compute
a supporting hyperplane whose normal is ∇g(v), where ∇ is
the subgradient operator.

The domain for the decision variable in Problem (9) only
includes the boundary of E . As the convex set E contains
the origin, we can enlarge the input domain to everywhere
except the inner of E and rewrite the optimization as

min v∈Rn ||v||2
subject to: v ∈ (Rn \ inner(E ))

(10)

where Rn \ inner(E ) is the complement of inner(E ). Prob-
lem (10) can be solved using the SQP [1] algorithm. More-
over, Problem (10) is a Difference-of-Convex problem. Thus,
additional properties can be used to simplify the SQP:

• SQP usually requires a trust region. This trust region
can be infinity for Difference-of-Convex problems [1].

• The linearization of the constraint v∈ (Rn \ inner(E )) is
a halfspace outside the supporting hyperplane. Thus, the
inner QP step of SQP can be implemented by projecting
the origin onto the supporting hyperplane.

The SQP algorithm is presented in Algorithm 2, which
alternates between: 1) compute the supporting hyperplane;
2) project the origin onto the hyperplane; and 3) compute the
intersection of the projection line with the boundary. Detailed
derivation is provided in the Supplemental Material.

Algorithm 2 cannot be directly applied to Minkowski
Difference D , as it requires explicit geometric representation
to compute a supporting hyperplane for boundary points.
This challenge will be addressed in Sec. III-B.

B. Instantiation using MPR as a Subroutine

In this subsection, we adopt the SQP procedure in
Algorithm 2 to the Minkowski Difference D , which is
represented by its support function suppD (·). For each
point v ∈ boundary(D), we can compute its direction dv =
normalized(v). We propose to use dv as the decision variable

Algorithm 3 SQP using Support Function

Require: support function suppD (·)
Require: initial direction dinit
Require: tolerance ∆ for MPR subprocedure

d0← dinit
while k = 0,1,2, ... do

mpr output←mpr(suppD , dk, ∆) ▷ Algorithm 1
(pk, vcandidate, dportal k)←mpr output
support plane← Plane(vcandidate, dportal k)
zk← project origin to plane(support plane)
if should terminate(pk, zk, dportal k) then

return intersect(origin ray(dk),support plane)
end if
dk+1← dportal k

end while

and represent v in Problem (10) implicitly by dv, based on
the following observations:

1) The point v ∈ boundary(D) can be estimated from dv
(with accuracy up on some tolerance ∆), using the
MPR algorithm in Sec. II-C as a subroutine.

2) More importantly, the supporting hyperplane normal
at v can be approximated by the portal normal dportal
upon the convergence of the MPR algorithm. It is
emphasized that usually dportal ̸= dv.

With these observations, we propose Algorithm 3 for the
Minkowski Difference D , which is transformed from Algo-
rithm 2. As this algorithm will be superseded in Sec. III-C,
we only provide an intuitive analysis in this subsection.

A critical property of Algorithm 3 is approximating a
supporting hyperplane normal by dportal k, which is further
illustrated in Fig. 3. Upon the convergence of MPR (Al-
gorithm 1) subroutine with tolerance ∆, the ground-truth
intersecting point v for direction dv must lie in the between
of the portal (segment (vportal 1,vportal 2) in Fig. 3) and the
supporting hyperplane at vcandidate. The portal and supporting
hyperplane are parallel to each other (they share the same
normal dportal), and the distance between these two planes
is no more than ∆ as the MPR terminates in this iteration.
Algorithm 1 uses p to approximate v and uses dportal to
approximate a supporting hyperplane normal at v. This
approximation is equivalent to removing points from D that
are separated from the origin by the portal, as illustrated in
Fig. 3 (b). This is because p is the exact intersecting point for
the shape in Fig. 3 (b), while dportal is the exact supporting
hyperplane at that intersecting point. The removed part is
a convex region whose “thickness” along dportal is no more
than ∆. Thus, the approximation becomes more accurate as
the tolerance ∆ is set smaller.

Algorithm 3 might work in practice. However, there can
be many iterations in the MPR subroutine, which is computa-
tionally expensive. This issue will be addressed in Sec. III-C.
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Fig. 3: Approximation scheme used in Sec. III-B and Algorithm 3.
(a) shows the configuration of the portal and supporting hyperplane
upon the convergence (with tolerance ∆) of MPR, when it is used
as a subroutine in Algorithm 3. Intuitively, the approximation in
Sec. III-B corresponds to removing all points “outside” the final
portal, as shown in (b). A detailed explanation is in Sec. III-B.

C. Penetration Depth Estimation with Shortcut

In existing software stacks [19], [2], MPR is typically used
with a rather small tolerance for accurate binary collision
checking. However, the primary functionality for the MPR
subroutine in Algorithm 3 is to produce a search direction
dk+1 via the supporting hyperplane normal dportal. Thus, we
propose to reduce the MPR iterations by an early termination
mechanism (shortcut) once a “good” dportal is discovered.

Fig. 4 shows the configuration of the portal and supporting
hyperplane in the MPR subroutine. The distance between the
portal and the supporting hyperplane might be (much) larger
than the tolerance ∆, as it is not necessarily the final iteration.
Let the point p be the intersection of origin ray(dv) with the
portal. MPR subroutine uses p as the current estimation of
v (the intersection with the boundary of D), and |p| ≤ |v|.
In other words, if we continue the MPR subroutine with
direction dv, the PD we would find is lower bounded by |p|.

Besides, we can project origin O to the supporting hyper-
plane to get z, as shown in Fig 4. Let vz be the intersection of
segment (O,z) with the boundary of D . Obviously |vz| ≤ |z|.
If we switch to a new search direction dz = normalized(z),
the PD we would find is upper bounded by |z|.

From the analysis above, in each MPR subroutine it-
eration, we have: 1) a lower bound of PD |p| along the
current search direction dv; and 2) a new search direction
dz candidate with an upper bound on PD |z| along it. We
propose to switch to the new search direction dz once the
upper bound z along dz is smaller than the lower bound along
the original direction dv, as shown in Fig. 4.

With the analysis above, the overall PD estimation algo-
rithm is summarized in Algorithm 4, which uses a subroutine
in Algorithm 5. The SQP procedure is almost identical to
Algorithm 3, except that the MPR subroutine is changed to
Algorithm 5. The MPR subroutine would be terminated early
with the abovementioned condition, as shown in Algorithm 5.
Despite the new shortcut mechanism, this SQP is guaranteed
to converge to a locally optimal solution. Please refer to the
Supplemental Material for a detailed analysis.

D. Implementation Details: Initialization

The Algorithm 4 requires an initial direction dinit. This
is a guess of the smallest displacement direction that could

Algorithm 4 Proposed SQP Algorithm for PD Estimation

Require: support function suppD (·)
Require: initial direction dinit

Replaces the invoked MPR subroutine in Algorithm 3
by mpr shortcut in Algorithm 5. The tolerance ∆ in
Algorithm 3 is no longer necessary.

Algorithm 5 MPR Subroutine with Shortcut in Sec. III-C

Require: D1,2 with support function suppD1,2
(·)

Require: ray direction dray
portal0← find portal(D1,2)
while k = 0,1,2, ... do

dportal k← portal normal(portalk)
vcandidate← suppD1,2

(portalk)
pk← intersect(origin ray(dray),portalk)
▷ A plane is defined by its normal and one point on it
zk← project origin to plane(Plane(vcandidate, dportal k))
if |zk| ≤ |pk| then ▷ Shortcut in Sec. III-C

return pk, vcandidate, dportal k
end if
portalk+1← update portal(portalk, vcandidate)

end while

move shape A1 away from colliding with shape A2. For
applications that exhibit high spatial or temporal coherence,
there might be a good application-specific guess of the
minimum penetration direction. For instance, in dynamic
simulation [24], [16], [22] colliding object pairs tend to have
very similar penetration direction and depth in consecutive
simulation steps. Similarly, in optimization-based motion
planning [23], [20], [10] we might use the penetration direc-
tion from the previous optimization iteration as dinit, espe-
cially for planning algorithms with trust-region mechanisms
to ensure a small difference between consecutive iterations.
If application-specific prior about penetration direction is
unavailable, one alternative method is to use the centroid
difference between two shapes as dinit as suggested by [11].

IV. RESULTS

In this section, we experimentally investigate the robust-
ness, accuracy and efficiency of the proposed method. We
first compare our method with EPA [25] and DEEP [11].
Then, an ablation study is conducted to highlight the shortcut
mechanism introduced in Sec. III-C. Parameters are tuned
such that all algorithms have roughly the same accuracy.
The source code and supplemental document are available
on this link.

A. Comparison with EPA

Our method is compared with the EPA [25] algorithm
implemented in libccd [5], a popular library used in various
robotics applications [19], [22]. The evaluation is performed
on two sets of shapes. The first one consists of simple
primitives, and the second set is convex polyhedra with
different numbers of vertices.

https://github.com/weigao95/mind-fcl
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Fig. 4: An illustration of the shortcut mechanism in Sec. III-C.
The penetration depth along dv is lower bounded by |p|, while
the penetration depth along dportal(dz) is upper bounded by z. We
proposed to switch to dz as the new search direction when |p| ≥ |z|,
as explained in Sec. III-C.

Primitive Shapes. We consider the penetration depth be-
tween three types of shape pairs:

• Sphere collides with sphere (sphere vs. sphere)
• Capsule collides with capsule (capsule vs. capsule)
• Sphere collides with capsule (sphere vs. capsule)

For these simple primitive shapes, we use hand-written PD
algorithms as the ground truth. The shapes have characteristic
dimensions (such as sphere diameter) of 1 meter in this ex-
periment. All of the statistical results are the averaged value
of 10000 independent runs with randomly generated poses
for the shape pair. Please refer to supplemental materials for
detailed setup.

Our method requires an initial penetration direction guess.
For the purpose of benchmarking, we use the following
method to obtain the initial guess. Given the ground truth
penetration direction from the hand-written algorithm, we
apply a rotation of n degrees with respect to a random axis
that is perpendicular to the ground-truth direction. Then, the
rotated direction is used as the initial guess.

Table. I and II shows the accuracy of our method under
different rotation perturbation angles n, where n ranges from
5◦ to 45◦. Table. I presents the distance error while Table. II
shows the directional error. We report the average deviation
of 10000 independent runs. Both EPA and our method can
accurately estimate the penetration. The proposed algorithm
is rather accurate despite the large initialization error.

Table. III summarizes the performance of our method.
Our method achieves 20x-30x speed up compared to EPA.
Moreover, the performance improvement is consistent for
different shape types and deviations of initial guess direction.

Convex polyhedra. The second experiment compares our
method with EPA on convex polyhedra. We use the similar
sphere-capsule setup, but replace the sphere with its convex
polyhedral approximation at different resolutions. Higher
resolution with more vertices and faces improves the approx-
imation accuracy at the cost of computational complexity.

Fig. 5 shows the performance of the proposed algorithm
with respect to the number of vertices in the convex poly-
hedra. The proposed method consistently outperforms EPA
baselines with about 6-10x speedup.

Ours
(5◦)

Ours
(25◦)

Ours
(45◦) EPA

Sphere vs.
Sphere 0.909 1.018 1.03 1.58

Capsule vs.
Capsule 1.092 1.12 1.12 0.39

Sphere vs.
Capsule 1.255 1.31 1.30 1.72

TABLE I: The penetration depth error in micrometers (10−6 meter)
of various algorithms compared with the ground truth. The result
errors are the average of 10000 independent runs. Our method is
evaluated with different angular deviations (of initial penetration
direction) at 5◦, 25◦, and 45◦. Geometries have characteristic
dimensions (such as the diameter of the sphere) of 1 meter.

Ours
(5◦)

Ours
(25◦)

Ours
(45◦) EPA

Sphere vs.
Sphere 1.82 1.38 1.93 8.84

Capsule vs.
Capsule 3.19 3.42 3.23 10.39

Sphere vs.
Capsule 2.25 2.31 2.30 10.72

TABLE II: The penetration direction error in milliradian (10−3

radian) of various algorithms compared with the ground truth. The
result errors are the average of 10000 independent runs. Our method
is evaluated with different angular deviations (of initial penetration
direction) at 5◦, 25◦, and 45◦.

B. Comparison with DEEP [11]

The proposed method is compared with [11], which
computes penetration distance incrementally by walking on
the surface of Minkowski Difference. We implement the
baseline algorithm in C++, as well as the internal convex
polygon intersection algorithm [18]. We use the suggested
initialization scheme: given an initial guess of penetration
direction, compute the vertex hub pair by taking the extremal
vertex of each shape along that direction. As [11] can only
handle convex polyhedra, we use a sphere-sphere setup
similar to Sec. IV-A but replace the sphere with its convex
polyhedral approximation.

Fig. 6 shows the performance comparison between the
proposed algorithm and the baseline. The initial direction
deviation is fixed as 5◦ and the sphere shape is discretized at
different resolutions. The proposed method outperforms the
baseline [11] with about 2x speedup.

Ours
(5◦)

Ours
(25◦)

Ours
(45◦) EPA

Sphere vs.
Sphere 1.9 2.1 2.3 85.1

Capsule vs.
Capsule 1.6 1.9 2.0 39.5

Sphere vs.
Capsule 2.0 2.2 2.4 61.5

TABLE III: Performance of the proposed method under different
angular deviations of the initial direction guess. Results are the
averaged time in microseconds from 10000 independent runs. The
proposed method is 20x-30x times faster than EPA.
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Fig. 5: Performance comparison between our method and EPA [25]
under different number of vertices in convex polyhedron. Results
are the averaged time in microseconds computed from 10000
independent runs. Our method is evaluated with different angular
deviations (of initial penetration direction) at 5◦ and 45◦. The
proposed method achieves 6-10x speedup compared to the EPA
baseline.
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Fig. 6: Performance comparison between our method and
DEEP [11] under different number of vertices in convex polyhe-
dron. Results are the averaged time in microseconds. Both methods
are evaluated with angular deviation (of initial penetration direction)
at 5◦. The proposed method is about 2x faster compared to the
baseline.

C. Ablation Study on Shortcut Mechanism

In Sec. III-C, a shortcut mechanism is introduced to
improve the performance by reducing the number of MPR
iterations. To highlight its benefit, we conduct an ablation
study by removing the shortcut mechanism of the proposed
algorithm. We use the same convex polyhedra setup as
Sec. IV-A. The initial direction deviation is fixed as 45◦.

The result is shown in Fig. 7. The number of support
function invocations and running time are used to char-
acterize the performance. From the figure, the proposed
shortcut mechanism can halve the required support function
invocations and lead to about 2-3x speedup.

V. CONCLUSION

This paper presents a novel algorithm to estimate the PD
between convex shapes. To achieve this, we formulate the PD
estimation as a Difference-of-Convex optimization. Then, we
propose a novel instantiation of SQP using a modified MPR
subroutine that solves the optimization-based PD estimation.
We further present a shortcut mechanism that significantly
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Fig. 7: An ablation study is conducted to highlight the benefit
of the proposed shortcut in Sec. III-C. In the figure, (a) shows
the performance measured by the number of support function
invocations, while (b) shows the performance in microseconds.
The proposed shortcut mechanism can halve the required support
function invocations and lead to about 2-3x speedup.

reduces the computation. Through various experiments, we
show that the proposed method achieves a 5-30x speedup
over the well-known EPA algorithm at comparable accuracy.
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