KiloBot: A Programming Language for Deploying
Perception-Guided Industrial Manipulators at Scale

Wei Gao* Jingqiang Wang
Mech-Mind Robotics Mech-Mind Robotics
Xinv Zhu Jun Zhong Yue Shen Youshuang Ding
Mech-Mind Robotic Mech-Mind Robotic Mech-Mind Robotic Mech-Mind Robotic
Abstract

We would like industrial robots to handle unstructured environments with cameras and
perception pipelines. In contrast to traditional industrial robots that replay offline-crafted
trajectories, online behavior planning is required for these perception-guided industrial ap-
plications. Aside from perception and planning algorithms, deploying perception-guided
manipulators also requires substantial effort in integration. One approach is writing scripts
in a traditional language (such as Python) to construct the planning problem and perform
integration with other algorithmic modules & external devices. While scripting in Python is
feasible for a handful of robots and applications, deploying perception-guided manipulation
at scale (e.g., more than 10000 robot workstations in over 2000 customer sites) becomes
intractable. To resolve this challenge, we propose a Domain-Specific Language (DSL) for
perception-guided manipulation applications. To scale up the deployment, our DSL pro-
vides: 1) an easily accessible interface to construct & solve a sub-class of Task and Motion
Planning (TAMP) problems that are important in practical applications; and 2) a mech-
anism to implement flexible control flow to perform integration and address customized
requirements of distinct industrial application. Combined with an intuitive graphical pro-
gramming frontend (Figure. , our DSL is mainly used by machine operators without coding
experience in traditional programming languages. Within hours of training, operators are
capable of orchestrating interesting sophisticated manipulation behaviors with our DSL.
Extensive practical deployments demonstrate the efficacy of our method.

1 Introduction

The wide availability of RGBD cameras provides robots with powerful 3D sensing capabilities. As a result,
robots equipped with these sensors are entering industrial production to handle unstructured environments.
As the task environment is not static, and manipulated objects in these applications are perceived from
cameras, the robot behaviors must be planned online (instead of crafted offline). This type of behavior
planning problem contains elements of discrete decision-making and continuous motion generation, and is
denoted as Task and Motion Planning (TAMP). Extensive contributions (Alami et al., 1990; [Hauser and
Latombe, 2010; |Garrett et al., 2018; |Srivastava et al., 2014) have been made regarding this topic and many
open-source packages are available. Please refer to (Garrett et al., 2021) for a detailed review.

*Corresponding author. Email: gaoweil9951004@hotmail.com

Figure 1: The graphical programming frontend for our programming language. Users orchestrate the robot
behaviors by drag-and-drop programming to construct a control-flow graph, as shown in region (b) on the
right. The region (a) on the left is the 3D visualization and resource window.

Despite these excellent contributions, deploying perception-guided manipulators requires substantial effort
in integration. This is the procedure of: 1) constructing the TAMP problem as the input to the planner; 2)
putting different modules (e.g., perception) together; and 3) implementing control flows to address customized
requirements of industrial applications. Writing integration scripts in Python is feasible for a handful of
applications. However, planning problems and control flows in these scripts are tightly coupled with field
works such as hardware setup, tuning for algorithm parameters && movement targets, sensor calibration,
and communication with external devices. Thus, the integration code among different applications is almost
non-reusable. Consequently, close collaboration between a programmer and a field application specialist is
required for deploying each application, which is time-consuming and expensive.

The “scripting” approach mentioned above in a traditional programming language has limited scalability.
Thus, we propose a new Domain-Specific Language (DSL) to reduce the integration effort and scale up the
deployment. Regarding the front end, we design an intuitive graphical programming interface mainly for
field application engineers or machine operators without experience in traditional programming languages
(Python/C++). This is inspired by many existing graphical programming languages (Burnett and McIntyre,|
(1995} Tsai, 2019)) intended for education and entertainment that target people without coding experience.
As shown in Figure. [1] users can orchestrate the robot behaviors by drag-and-drop programming to construct
a control-flow graph (detailed in Sec. .

The backend of our DSL is responsible for running the TAMP algorithm and executing the user-defined
control flow. We propose a novel interface between the DSL and the planning algorithm: users only need
to craft a “skeleton” of the desired robot behavior, where the skeleton might contain a set of parameters
(both discrete and continuous) not determined offline. Then, the planning algorithm generates these missing
parameters during online execution. In this interface, users do not need to understand the TAMP algorithm
or explicitly implement the planning problem description (in a modeling language like PDDL). Thus, the
interface is user-friendly even for machine operators without coding experience.

The contributions of this paper are as follows: 1) we design a novel DSL for machine operators without
coding experience to deploy perception-guided robot manipulation applications. 2) We propose a novel
interface that implicitly integrates a customized TAMP problem description and planning algorithm into
our DSL. The interface is user-friendly, and the TAMP planner meets the performance requirement for
deployment. 3) Inspired by pipelining in modern CPU, we introduce a “pre-planning” interpreter for our DSL

that interleaves robot movement with planning (for future robot behaviors). This pre-planning mechanism
significantly improves the manipulator’s throughput (# of pick-place per minute). 4) We conduct extensive
tests of our DSL during the deployment of more than 10000 robot workstations worldwide. Please visit
https://www.mech-mind.com/| for more examples.

This paper is organized as follows: in Sec. [2| we introduce related works. Sec. [3| presents the preliminar-
ies. Sec. {4] presents the design of our DSL and the interface with TAMP planner. Sec. 5| introduce the
implementation of interpreter and the pre-planning mechanism. Sec. [f] shows the results. Sec. [§] concludes.

2 Related Work

2.1 Robot Offline Programming Software

Robot offline programming (Wittenberg, 1995; Pan et al., 2012) means generating robot programs in a
virtual environment based on 3D CAD data (instead of pendant teaching). Offline programming software
is typically equipped with advanced collision detection and motion planning algorithms to generate robot
movement for various industrial applications, such as welding, coating, dispensing, and robot milling. Users
can inspect the generated movement in the integrated simulator of the software. Once the movement is
verified, it can be downloaded to the physical robot for online execution.

Offline programming softwares (RoboDK, 2015; [RobotStudio, 1988} [Robotmaster, 2002)) have been ex-
tensively deployed in practice and they accomplish many challenging manipulation tasks. However, the
offline-generated robot movements cannot adapt to dynamic or unstructured working environments, where
the manipulated objects must be perceived online. Our system is proposed to resolve this limitation using
online perception and planning pipelines.

2.2 Integrated Task and Motion Planning

As described in (Garrett et al., 2021)), task and motion planning (TAMP) is the problem of finding actions
of a robot that moves itself and changes the state of the environment objects. TAMP contains elements of
discrete task planning and continuous motion planning. Extensive contributions (Alami et al., 1990} [Hauser|
land Latombe, 2010; |Garrett et al., 2018; |Srivastava et al., 2014) have been made on strategies to solve
TAMP problems. Many of these algorithms require an internal planner to solve the joint-space collision-free
motion planning problem. The most effective methods are based on sampling (Kavraki et al., 1996; LaValle|
land Kuffner Jr, 2001) and trajectory optimization (Ratliff et al., 2009; Schulman et al., 2014).

Our work is built upon these excellent contributions regarding the formulation and planning algorithms of
TAMP problems. Actually, one prominent feature of our DSL is to serve as an interface layer that converts
user control-flow graph (with undetermined parameters) into a series of problem descriptions that can be
solved by existing TAMP algorithm (Garrett et al., 2018]).

2.3 Manipulation Pipelines

Researchers have created robot manipulation pipelines (Zeng et al., 2021} [Florence et al., 2019; |Gao and)|
[Tedrake, 2021} Xia et al., 2022)) with interesting capabilities. These methods typically integrated various
perception and planning modules to achieve intelligent manipulation behaviors. Some pipelines accept inputs
from other modality, such as language (Liang et al., 2023; Driess et al., 2023)) or tactile sensors
let al., 2012} [Su et al., 2023). Compared to these excellent works, our DSL is designed to address different
challenges. The manipulation behavior programmed by our DSL is typically much less innovative than these
works. On the other hand, we would like to achieve deployment at scale by reducing the integration cost and

https://www.mech-mind.com/

(@ ©

o

RoutineEntry

1 1
1 1
1 1
1 1
! | |
1 SetVariable 1 name: pick once
SetVariable ! var_name: a ! l
var_name: a . var_value: 1 H RoutineEntry
var_value: 1 i [i CounterBranch
l i v H SetVariable counter_var: a
H [ncreaseCounter | var_name: flag branch_right_value: 1
1 1 .
IncreaseCounter H counter var: a 1 var_value: 1
counter_var: a : : l
1 1 R
l \ l !'| InvokeRoutine . DlgltalOut
. CounterBranch !'| name: pick_once " b
Corresponded python code i counter_var: a i l
1 . . 1
a=1 # state = {a: 1} ! branch_right_value: 10 ! RoutineExit MoveJoint
a=a+ 1#state = {a: 2} | l | o
i i jps: pre_grasp
i i
1 1
1 1

RoutineExit l

Figure 2: Examples of control flow graph representation of user programs. (a) Nodes in a control flow graph
correspond to a Python statements. (b) Edges in a control flow graph can be used to implement branch and
loop structures, such as the green edge. (c) Similar to functions in Python, nodes in a control flow graph
can be organized into routines, which can be invoked from another routine.

address customized requirements in industrial applications that are diverse, application-specific and tightly
coupled with field work.

3 Preliminary

3.1 Control Flow Graph

Our DSL, as well as several existing programming languages with graphical frontends, enables users to
explicitly construct control flow graphs by drag-and-drop operations. In this sub-section, we present an
overview of the control flow graph in this context and compare it with Python, a traditional interpreted
programming language.

A control flow graph is a “node and edge” representation of the user program, an example is shown in
Figure.[2] Each node in the control flow graph roughly corresponds to a statement in Python. The statement
can perform read and/or write operations to the variable map (environment), which is a map from variable
name string to variable value. A statement can also produce side effects, such as writing a file or sending a
message. In the following text, we would use node_name (user_parameters) to denote nodes, for example
IncreaseCounter(counter_var:str). We omit the (user_parameters) when the context is clear.

A directed edge in a control flow graph implies the execution order of different nodes, which roughly cor-
responds to the goto statement in Python. Thus, edges in a control flow graph can be used to implement
branch and loop structures, which corresponds to if/for/while/break/continue in Python. An example
is shown in Figure [2] (b), where the directed edge implements a loop.

Similar to Python, nodes in a control flow graph can be organized into routines (or functions). A routine is
also a node graph that can be invoked by another routine. An example is shown in Figure 2] (c). A routine
has exactly one entry, which is the RoutineEntry node. A routine has one or more exits, which is marked
by RoutineExit nodes. One particular routine, denoted as the main routine, is the global entry of the entire
program. Except for the RoutineEntry node, every node has exactly one in-port. Similarly, every node has
one or more out-port except for RoutineExit node.

Variable Name: Type Description

jps: Vector Robot joint-space configuration.

active_tool: Int Index of the currently used gripper tool.

Data that are usually not mutated during execution, such as robot
model, static collision geometry, gripper tool setup.

Objects that are picked by the robot. The geometry, pose wrt gripper,
and other meta-info of each object is included.

Objects that have been placed by the robot. The geometry, pose in
world, and other meta-info of each object is included.

RPC response from the perception service identified by srvID. It con-
tains pose, geometry, grasping and other info about detected objects.

static_env: Compound

picked_objects: Compound

placed_objects: Compound

{srvID}_perception: Json

Table 1: Several important variables used in our DSL.

3.2 Specialization for Pick-and-Place Manipulation Applications

Our DSL can be regarded as a control flow graph with interface for constructing and solving TAMP problems.
This interface is discussed in Sec.[d] In this subsection, we present several design decisions not directly related
to planning, which serves as the background for further discussion.

Frontend and backend: Our implementation of the DSL is separated into the frontend and backend, and
both of them are represented as control flow graphs. The frontend, illustrated in Figure. [} is designed for
user-friendliness with a lot of “language sugar”. The frontend control graph, as a serializable representation
of the user program, can be converted into a backend control flow graph for execution. The discussion in
the following text mainly focuses on the backend.

Variable mechanism: Table. [I| summarizes several important variables in our DSL. In addition to these,
user can define their own variables (e.g., by SetVariable node) and make arbitrary mutations to them. The
backend provides a FunctorVariableMutation node, which contains a pure C++ functor (std: :function)
that takes the variable map as input and produces a list of mutations to that variable map. Nearly all
frontend nodes that are unrelated to planning are converted into this node in the backend, such as the
IncreaseCounter in Figure. 2l Moreover, advanced users that are capable of programming can implement
their own fuctors and insert them into the control flow graph by this node, which is used to address very
complex application requirements.

In our DSL, all variables are global. In particular, there are no local variables for a routine. The information
exchange between the routine caller and callee is achieved by reading and/or writing of global variables. This
design decision is made because our DSL does not aim at complex control flows. Sophisticated algorithms
and operations are either embedded in the behavior planner or provided as pre-defined nodes for users to
drag-and-drop.

External communication: Our DSL communicates with external algorithmic modules and devices through
Remote Procedure Call (RPC). Our discussion would be restricted to synchronized RPC for simplicity, while
asynchronous RPC is used by default in the backend for efficiency.

A node CallService(srvID:str, request_var:str, response_save_var:str) can be used by program-
mers to invoke a RPC service. This node has the following behavior: 1) find the service from registered ones
by the srvID; 2) Pack and send the request message, which contains meta info (e.g., timestamp and message
ID) and optionally a serializable variable identified by request_var; and 3) wait for the response message
synchronously (blockingly), and save the response message to a variable named response_save_var.

For example, the entire perception stack is an RPC service in our pipeline. This includes invoking the

PlanRoutineEntry (0) |

1
1
: M3
Robot : MoveJoint (1) MoveToObjectPose (4)
! .
! target: qo obj_pose: pg
' l
' .
H MoveToPick (2) PlaceObject (5)
(©) ©® srvID: srv0
: l RelativeMove (6)
d RelativeMove (3) delta: [0,0,0.1]
\ delta: [0,0,0.1]
1
1
(2 ' (b)

Figure 3: A schematic example of robot pick-and-place behaviors and the corresponding user program in our
DSL. Perception service provides a scene with two objects (A and B), each with two possible grasping poses
(in dash lines), as shown in (a). The user program, as shown in (b), contains nodes that are intentionally
undetermined offline and can not fully specify the robot behaviors. During execution, the interpreter invokes
the behavior planning to make discrete decisions (e.g., selection of object instance and grasping pose) and
generates robot trajectories. If the planning succeeds, the interpreter executes the user program given the
planning result (online-parameters of each node). Please refer to Subsec. for a detailed explanation.

camera to take an image, running a series of perception algorithms (object detection, pose estimation,
occlusion detection, grasping pose generation), and sending the result back to the RPC caller. By default,
the response variable of perception service is {srvID}_perception. RPC is also used to communicate with
other algorithmic modules (e.g., palletization pattern generation) and external devices (e.g., conveyors).

4 Interface with Robot Behavior Planning

A TAMP algorithm is integrated into our DSL to alleviate the users’ burden of making discrete decisions
and crafting robot trajectories. We propose the following interface between the language and the planner:
some pre-defined nodes are used to specify a “skeleton” of desired robot behavior, and they are intentionally
undetermined offline. The planner converts these skeleton nodes into executable nodes by providing them
with a set of discrete and/or continuous parameters. For notational clearance, we use online-parameters for
a given node to denote its parameters generated by behavior planning. This is in contrast to user-parameters
of nodes mentioned in Sec. which are explicitly provided by the users.

For example, the IncreaseCounter (counter_var:str) node has one user-parameter: a string indicating
the counter variable name to be increased. It does not need an online-parameter as it is not involved with
planning. On the other hand, for movement nodes (detailed in Subsec. , online parameters are the
planned joint-space trajectories and the safety certificate of the trajectories. It is emphasized that online-
parameters are not visible to users. They are part of the runtime data used to execute nodes that need
planning. Thus, to make the DSL user-friendly, we only need to simplify the user-parameters of nodes.

In the following subsections, we describe this interface in detail. Subsec. [4.]] gives an overview with an
illustrative example. Subsec. and Subsec. present nodes for movement and pick-place behaviors,
respectively. Subsec. [£.4] describes the integration of planning into the control flow of our DSL.

4.1 Illustrative Example

In this subsection, we present an overview of our DSL using a schematic example, as shown in Figure.
Suppose the perception service provides a scene with two objects (A and B), each object has two possible
grasping poses (in dash lines), as shown in Figure. [3[(a). The user program for a pick-place manipulation is

shown in Figure. 3| (b), with user-parameters annotated for each node.

The MoveJoint node (1) moves the robot from its initial configuration to a new configuration on top
of the container. This node needs a target joint position as the user-parameter. It also requires a
trajectory_config user parameter to specify how the robot should reach its target (e.g., straight line
or RRT-generated path). To provide a clear presentation, this user-parameter is omitted in Figuire

The MoveToPick node (2) has the following behavior intuitively: 1) move the robot to a configuration
that can grasp an object; and 2) pick up the object by attaching it to the robot end-effector. In the
simplest form, the only user-parameter for this node is the name of the perception service response variable
({srvID} _perception by default). The planner automatically figures out which object to pick, what is the
optimal grasping pose and how to reach the robot-picking configuration as the online-parameters. Thus,
users only need to provide high-level supervision, while the detailed decision-making and trajectory crafting
are handled by the planner. Additional user-parameters can be used to guide the decision-making, as detailed
in Subsec 4.3

The RelativeMove node (3) and MoveToObjectPose node (4) are both movement nodes that move the robot
to new configurations. The RelativeMove node (3) applies a constraint between the end-effector poses before
and after this node, and it is used to lift the object in this example. The user-parameter of RelativeMove
node is the relative transformation that defines the constraint. The MoveToObjectPose node (4) moves the
robot to a joint configuration such that the picked object is at the user-specified pose. In its simplest form,
this node only needs the object pose as the user-parameter. Alternatively, users can provide a map from
object type to pose. Thus, this node would move the picked object to different poses according to its type.

The PlaceObject node (5) places the picked object(s) by detaching it from the robot end-effector and re-
attaching it to the world. This node does not need an user-parameter or online-parameter. However, this
node is involved in planning because it changes the geometry attachment and affects the collision checking
of future movement nodes, such as the RelativeMove (6) in this example.

In this example, nodes (1)-(6) appear independent from each other. However, the underlying behavior
planning must consider many nodes jointly, as these nodes’ online parameters (both discrete or continuous
ones) are coupled. For example, the selection of objects and grasping pose in MoveToPick (2) would affect
the collision checking and trajectory generation of movement nodes (3-4) and PlaceObject node (5). An
inappropriate picking decision, without considering the subsequent transferring and placement of the picked
object(s), might lead to unavoidable collision or kinematic infeasibility.

To address this issue, we propose to give users the authority to specify nodes that must be planned jointly.
In particular, a special type of routine, named plan-routine, defines the scope of one behavior planning
problem. The example in Figure. [3| (b) is a plan-routine with a special PlanRoutineEntry node (0). With
this formulation, the interpreter understands the discrete decision for MoveToPick (2) must consider node
(1) and (3-6). In our practice, a plan-routine typically contains one iteration of pick-place operation. As the
plan-routine is the basic unit of behavior planning, it cannot contain arbitrary topology structures (e.g., no
loop). For now, we assume the plan-routine is a simple sequence. This constraint is relaxed in Subsec.

4.2 Nodes for Robot Movement

In this subsection, we describe nodes for robot movement. All movement nodes, for instance ones in Figure. [3]
are defined by two generic user-parameters: the target of the movement and the trajectory_config. Both
user-parameters are used to generate robot trajectories during behavior planning, and they might induce
various discrete decisions detailed below.

The target user-parameter, provided by the human operator, specifies the high-level movement target,
which would eventually be resolved as a fully determined joint target during planning. This high-level

target might be provided in many forms, such as:

A robot joint target (MoveJoint node in Figure. . No decision-making is required for this target.

A pose target for the robot end-effector. For this target, the inverse kinematics is invoked which
generates several solutions in joint space (6-DoF robots typically have 8 solutions), as illustrated in
Figure. 4| (c). The planner should evaluate the feasibility of these solutions and select the best one
according to some metrics (e.g, minimum joint-space distance).

e A pose target for the picked object (MoveToObjectPose node in Figure. . One object pose target
might be transformed into multiple end-effector pose targets due to the symmetry of the picked
object(s), which occurs frequently in industrial applications. An illustration is shown in Figure.
(f). The planner should attempt these end-effector pose targets and select the best one.

e A (discrete or continuous) set of pose targets for picked object(s) or end-effector. The most prominent
example is the PalletizationMove node, where the picked box(es) can be placed into multiple
positions of a pallet. An illustration is shown in Figure. 4| (¢). The planner might need to consider
various factors for this decision, such as the feasibility of future palletization movement.

e A target that depends on the intermediate output of the planner. For instance, a RelativeMove
node that depends on the previous target or PalletizationMove node that depends on the selected
box(es) for picking. Generally, the movement target can be a function of previous/future movement
targets, object properties, active tool and picking state. The planner should correctly resolve those
dependency during planning.

On the other hand, the trajectory_config user-parameter specify how should the robot reach its target.
The trajectory might be a simple straight line in joint/end-effector space, a selection from a trajectory library,
or a complex trajectory generated by an advanced motion planner (e.g., RRT). This trajectory_config
parameter also includes various user preference on the trajectory, such as collision option, movement speed
configuration and singularity detection option. Moreover, a sequence target and trajectory_config pa-
rameters can be received from RPC messages and decoded into a robot_trajectory variable, which is the
user-parameter of the MoveTrajectoryByVariable node. This enables the robot to execute movements from
external commands.

All the movement nodes have the same types of online-parameter: the planned robot joint-space trajectories
and the safety certificate of the trajectories. Given the online-parameters, the execution of movement nodes
would: 1) send the planned joint-space trajectory to the robot service (which is an RPC service) for execution;
and 2) update the jps variable (Table. [1)) to the final joint configuration of the generated trajectory.

4.3 Node for Object Picking

In this subsection, we formally describe the MoveToPick node introduced in Subsec. [{] which plays a
critical role in our DSL. For robot picking, the robot needs to use various types of gripper tools (suction
cup, parallel-jaw, etc), move to appropriate joint-space configuration and pick up one or several objects.
The perception pipeline produces objects available for pick, the method (gripper tool index, picking pose
wrt objects, digital-out ports) to pick up each object and other meta-info. After robot picking, those picked
objects would be attached to robot end-effector, thus the planner must ensure picked objects are not in
collision during subsequent robot movements.

As mentioned in Subsec. MoveToPick has only one major user-parameter: the srvID which identi-
fies the perception service. Given the srvID, the perception message that contains objects and grasp-
ing information can be found in the variable map (environment), as shown in Table This node also
needs a trajectory_config user-parameter. By default, an end-effector straight-line movement is used as

U

Figure 4: Representative examples of discrete decisions in our DSL. (a) Select the object to pick from a set
of perceived objects. (b) Select the grasping pose of the object-to-pick. (c¢) Decide the best IK solution for
a given end-effector pose. (d) Choose the gripper tool from multiple candidates. (e) Select the target from
a target set, which can be either automatically generated (e.g., in palletization applications) or explicitly
specified by the user. (f) Select the symmetry of the object for a given object pose target.

trajectory_config. Additionally, the user might specify a set of filters to specify additional requirements
for the grasping candidates according to various factors, such as object type, picking pose, and the number
of picked objects.

The behavior planning needs to select the grasping from a set of candidates. That includes selecting the
object(s) to pick, and the end-effector pose for the selected object(s). An illustration is shown in Figure. [4]
(a) and (b). Due to the symmetry of the objects and the gripper tool, there can be tens or hundreds of
possible grasping poses for each object instance. Combined with tens of objects, the planner might need to
attempt thousands of grasping candidates. The induced computation can be rather expensive, as the picking
decision must be jointly made with subsequent movement nodes, as shown in Subsec. After making the
picking decision, the planner also generates the robot trajectory that reaches the grasping pose.

Given the picking decision and reaching robot joint-space trajectories as the online-parameters, the execution
of MoveToPick node would: 1) remove objects that are selected for picking from the perception result variable,
and insert them into picked_objects variable (after updating attachment and meta-info); 2) execute the
movement to reach the picking configuration in the same way as movement nodes.

It is emphasized that the MoveToPick node does not involve the physical actions for robot picking behaviors.
For example, picking up an object might require turning on the vacuum gripper or closing the parallel-jaw.
To execute picking physically, nodes must be set up to send a control message to the gripper (which is
an RPC service) or set a DigitalOut on the robot (if the gripper is connected to the robot). Thus, these
physical nodes depend on hardware and connection configurations. Typically, the node for turning on the
suction cups in a vacuum gripper is connected before MoveToPick, while node for closing the parallel-jaw is
connected right after MoveToPick.

4.4 Structure of Plan Routines

In Subsec. [A1] we discuss the plan-routine under the assumption that it is a simple sequence of nodes. In
this sub-section, we relax this constraint by adding several types of branch nodes into the plan-routine, as
illustrated in Figure. |5 These types of branch nodes can be converted into a set of node sequences during
planning, thus the planning algorithm in Subsec. [5.I] can be used to solve it. On the other hand, plan-
routine cannot contain loops. This rule is enforced by static checking during the conversion from frontend
to backend.

(b) PlanRoutineEntry (3)
name: pick place

(a)

|RoutineExit | |RoutineEXit| target: qo target: q;

! !

! 1
! 1
1 1
1 1
! 1
! 1
PlanRoutineEntry (0) | | .\Lbl 7 '
“ i 1 |

RoutineEntry name: pick_place \ Se;\;?;? ﬂae) ! PlanRoutineEntry (8)
) ' . & ! name: pick_place
MoveToPick (1) i value: 1 '
i ID: : 1
Invoke.Routme srviD: srv0 | ' i | PlannerSelect (9) |

name: pick_place l ! ¢ :
1 1

l l i CounterBranch (5) i SetTool (10)| [SetTool (11)

NOdeS.for ! counter_name: flag ! tool: 0 tool: 1
HFan_<lilmg | DetectObjectFalling (2) | ! l l ! l l
ailure :
lOK lObJeCt Fall i Move]oint (6) | |Move]Joint (7) i

| |
! 1
1 1
1 1
1 1
! 1

Figure 5: Branch structure types supported by a plan-routine. (a) The branch is explicitly marked as an
exception. (b) The branch can be decided from data flow analysis. (¢) The PlannerSelect branch used to
set up decision-making problems regarding arbitrary factors, such as gripper tool selection in this example.
Please refer to Subsec. [I.4] for a detailed explanation.

Exception branch: Some branch edges in a plan-routine are explicitly marked as exception by the user.
Usually, these exceptions are abnormal behaviors due to unmodeled effects. These exception edges are simply
ignored during planning, while they might take effect in execution. An illustration is provided in Figure.
(a), the DetectObjectFalling node is used to check whether the objects have been successfully picked up
(e.g., by force sensors on the gripper). If the picking is not successful, nodes for error recovery are executed.

Each plan-routine has a built-in PlanFailure exception. RoutineInvoke nodes that invoke a plan-routine
would have an out-port corresponding to this exception. Users might address the failure of behavior planning
by various methods. For example, in Subsec. [6.1] we use a vibration generator to create a random disturbance
to objects in the container. Then, another image is taken and the planning is retried.

Branch determined before planning: Some branches can be determined during the construction of
the planning problem. For example, in Figure. [5 the branch selection at CounterBranch node (5) can be
determined from the SetVariable node (4). In general, determining the branch is a standard dataflow
analysis problem, which is further simplified as plan-routines can not contain loops. A plan routine with this
type of branch nodes can be converted into a node sequence, which is solved using the planning algorithm

in Sec. Bl

Branch decided by the planner: As shown in Figure. [5| (c), a PlannerSelect node (9) is used to
request the planner to make a selection of gripper tools. This decision must be made jointly with other
nodes in the plan-routine, similar to other discrete decisions in Figure. [dl During planning, a plan-routine
with PlannerSelect nodes would be expanded into a set of node sequences. The PlannerSelect node can
be used to set up decision-making problems regarding arbitrary factors, such as object types, movement
trajectories, and placement locations.

5 Interpreter Implementation

As mentioned in Sec. [l our DSL introduces plan-routines into the control flow graph. These plan-routines
contain intentionally undetermined nodes that require online-parameters, such as movement trajectories
and/or picking decisions. As a result, the interpreter of our DSL is responsible for calling the planner for

these plan-routines when they are invoked during execution. Aside from that, the interpreter of our DSL
behaves the same as the ones in existing programming languages: executing each node one by one, updating
the variable map (environment), and generating side effects. In this section, we present the implementation
of the interpreter. Subsec. [5.1] describes the planning algorithm. Subsec. [5.2] presents a “pre-planning”
mechanism to reduce the cycle-time of the manipulation pipeline.

5.1 Planning Algorithm

In this subsection, we present the algorithm that generates the online-parameters of the plan-routine. Our
discussion is focused on the simple sequence, as branch structures presented in Subsec. can be converted
into a set of sequences.

We use a specialization of the method in (Garrett et al., 2018)) as the planner. In particular, we formulate
a hybrid state transition system following (Garrett et al., 2018). The state of this state transition system
is a set of variables, such as ones in Table. [} In addition to them, other problem-specific variables can
also be included in the state, for example a palletization_state variable is used to maintain the state
(palletization pattern, packed boxes and next available slots) for palletization applications. The actions,
which are converted from the nodes, define a set of constraints between the state before and after it. Using
this formulation, the plan-routine becomes a set of “skeletons” described in (Garrett et al., 2018)). Then,
a series of conditional samplers, which implement basic primitives (e.g., inverse kinematics, grasping pose
sampling, and motion planning), are composed into a constraint sampling network (Figure. 8 of (Garrett
et al., 2018))), which is used to generate online-parameters.

(Garrett et al., 2021) also proposed algorithms that search for the skeleton (jointly with the online-
parameters). As a result, many intelligent manipulation behaviors can emerge automatically, such as “moving
away the surrounding obstacles before reaching the target”. However, searching for the skeleton can be ex-
pensive due to the large solution space. In this work, we take a different trade-off with more emphasize
on computational performance: the skeletons are provided by the human operators through the DSL. This
approach aims to maximize the inherent advantages of the human operators and the planner. We rely on
the planner to operate over the domain in which it outperforms the human, such as accurate and fast nu-
merical computation, while leaving tasks that require cognition, such as high-level supervision, to the human
operator.

5.2 Pre-Planning Mechanism

The planning in Subsec. [5.1] can be time-consuming due to the large solution space and expensive operations
(e.g., the collision detection). When the perceived scene and planning-routine are complex, the robot might
need to stop the movement and wait for the planning result. To alleviate this issue, we propose to interleave
the planning for future nodes with the execution. This is fruitful because we can exploit the time spent on
waiting for RPC responses, which can be long from some services (e.g., robot service and perception service).
For example, while executing the plan-routine for pick-place iteration 1, we would perform planning (in a
background thread) for iteration 2 or 3. Thus, when executing pick-place iteration 2 the online-parameters
of nodes are ready. This mechanism is referred as “pre-planning” in the following text.

Consider the example in Figure. [} For simplicity, we omit the routine structure and use the red dash-line
block to imply nodes B and C are in a plan-routine. We assign a dynamic ID to each execution of a node.
Nodes with annotated dynamic ID is shown in Figure. |§| (b). In the first loop iteration, the planner generate
online parameters for (B2, C3). Suppose nodes Al and B2 have been executed, and we would like to perform
planning for the plan-routine in the next loop iteration, namely nodes (B4, C5).

To perform planning for (B4, C5), we need the variable map “as if” node C3 is executed. To achieve this,
we implement a simulate interface for nodes in our DSL. This interface tries to update the variable map

Plan-Routine

Figure 6: Example used to illustrate the pre-planning mechanism. For simplicity, we omit the routine
structure and use the red dash-line block to represent nodes B and C are in a plan-routine. Please refer to
Subsec. for a detailed explanation.

without generating side effect, and reports failure (which stops the pre-planning) if it is impossible. For
several types of nodes, their simulate interface would:

CallService: Mark the response variable as a special flag AvailableUponExecution. Reference to the
response variable during subsequent simulate would report failure.

Movements: Update the jps variable without sending request to robot service.
MoveToPick: Update the jps, picked_objects and {srvID} perception variables.

FunctorVariableMutation: This node and nodes derived from it (e.g., IncreaseCounter) behave the
same as execution, if no referred variable is marked as AvailableUponExecution.

ExceptionBranch: Select the first branch that is not marked as exception by the user, such as “OK”
branch in Figure. || (a).

OtherBranch: Similar to FunctorVariableMutation.

Using the simulate interface, the interpreter would maintain another program counter and variable map for
pre-planning. Then, the planning algorithm can be invoked (in a background thread) for future plan-routines
using this variable map, and the planning results (online-parameters) can be directly used without waiting
when these plan-routines are ready for execution. The pre-planning program counter and variable map would
be reset to execution values, if 1) a node or the planner refers a variable marked as AvailableUponExecution;
and 2) the guess in an exception branch node is wrong. This is similar to the pipelining and misprediction
recovery in modern CPUs.

6 Results

In this section, we first demonstrate a variety of industrially important applications that are implemented
in our DSL, in Subsec. These demonstration are achieved on several different hardwares regrading
robot platforms, gripper tools, RGBD sensors and external devices. Then, we show the effectiveness of the
proposed pre-planning mechanism in Subsec. [6.2} These examples are illustrated in the accompanied video.
Please visit |https://www.mech-mind.com/ for more examples.

6.1 Representative Examples

Mixed case palletization (a): The robot performs a mixed-case (consisting of multiple types of boxes)
palletization, as illustrated in Figure. m (a). The robot perceives the boxes using a camera and plans the
robot actions that pick up a suitable box, transfer it and place it on the palletization. The decisions (e.g.,
selection of the box and the placement location) in this example must be made according to the desired
palletization pattern that tries to maximize the space utilization rate.

https://www.mech-mind.com/

Figure 7: Representative industrial manipulation applications implemented with our DSL. (a) Mixed case
palletization. (b) Multiple pick de-palletization. (c) Recovery from planning failure using exception (Sub-
sec. and an external device (vibration generator). (d) Automatic selection of picking methods (suction
or parallel-jaw grasping) for a dual-use gripper. (e) Integration with geometric motion planner. Please refer
to Subsec. [6.1] for a detailed description.

Multiple pick de-palletization (b): The robot picks up boxes from a pallet and place them onto a
conveyor, as shown in Figure. [7] (b). To improve the throughput (# of boxes per hour), the robot might pick
up multiple boxes at once. The pipeline detects currently available boxes using a camera, makes decisions
about picking one or more boxes, and generates concrete picking behaviors and robot trajectories.

Recovery from planning failure (c): The robot picks workpieces and organizes them into a specific shape.
During manipulation, the planner might fail to find a feasible pick-and-place behavior (e.g., the reaching
movement collides with workpieces other than the picked one). The exception branch in Subsec. is used
to address the planning failure. In particular, an external vibration generator is used to create a random
disturbance to these workpieces in the container, as shown in Figure. m (c). After that, the perception and
behavior planning is re-tried.

Selection of different gripper tools (d): The robot is equipped with a special gripper tool that can
pick up the object by parallel-jaw or air suction, as shown in Figure. m (d). These two types of grasping are
treated as two logical gripper tools, and the pipeline automatically determines which one to use. As shown
in Figure. [5| this decision should be made incorporating the nodes for reaching, picking, transferring and
placement. During execution, the digital output corresponding to either closing the parallel jaw or turning
on the suction cup is invoked to pick up the objects.

Integration of geometric motion planner (e): Our DSL provides a flexible interface for the integration
of collision-free motion planners, such as sampling (Kavraki et al., 1996; [LaValle and Kuffner Jr, 2001)
and optimization (Ratliff et al., 2009; |Schulman et al., 2014) based methods, as the motion generation

1800

1600 B Planning Time M Waiting Time
1400
1200
1000
800
600
400
e 0 (BRE
o mmilM W N = = .
3 4 5 6 7 8 9 10

Problem 1 2
Planning Time [ms] | 43 | 63 | 120 | 276 | 384 | 431 | 565 | 577 | 1298 | 1645
Waiting Time [ms] | <1 | 62 | <1 | <l | <1 |433| <l | <1 | <l | 323

Time [ms]

Figure 8: The planning time and waiting time for 10 planning problems. With the proposed pre-planning
mechanism in Subsec. [5.2] the time that the robot must be stopped for waiting the planning result can be
eliminated or significantly reduced in many cases. Please refer to Subsec. for more details.

primitives of the TAMP planner in Subsec. These collision-free motion planners are accessed through
the trajectory_config user-parameter, as detailed in Subsec. An example is shown in Figure. El (e),
the shortcut algorithm in (Geraerts and Overmars, 2007) is used to generate a smooth and efficient robot
transferring movement of the picked object.

6.2 Effectiveness of the Pre-Planning Mechanism

The pre-planning mechanism proposed in Subsec. is used to interleave the node execution (e.g., waiting
for RPC responses from robot services) with planning for future plan-routines. To illustrate its effectiveness,
we compare the planning time with the time that the interpreter spends on waiting for the planning result.
If the pre-planning mechanism successfully exploits the node execution time for planning, the waiting time
should be much shorter than the planning time. The results are shown in Figure. [§| for 10 different planning
problems in user programs. Among them, 5 planning problems are from the examples in Subsec. Each
planning problem is invoked 5-30 times in the user program, and the times are the average of 20 runs of the
user program.

From the result, in most cases the pre-planning mechanism can eliminate or significantly reduce the waiting
time. Thus, the robot does not need to stop and waiting for online-parameters before execution. On the
other hand, the pre-planning can not help when the required variables are not ready (problems 2 and 6).
Moreover, if the planning time is very long (problem 10), the waiting time can not be fully eliminated.

7 Limitations and Future Works

Currently, the DSL mainly focuses on executing planned trajectories in an open-loop way. Reactive, closed-
loop control (e.g., visual servoing) is not supported in our DSL. Moreover, our DSL assumes that the
manipulated objects are (mostly) rigid. This abstraction does not work for deformable objects or more
dexterous manipulation actions on rigid objects, such as the in-hand manipulation in (Andrychowicz et al.,|
2018). Deploying these interesting manipulation skills into industrial production at scale is still challenging,
and it is a promising direction for future work.

In terms of the implementation, our DSL evolved from a GUI application to simplify the deployment of the
perception-guided manipulation pipeline. During the early stage of development, many concepts are unclear
as we have not realized the software should be designed as a programming language, and various shortsighted
design decisions have been made. The graphical user interface designed at that stage, which was already
used by many customers, became historical baggage. Thus, several features of the DSL can only be provided
in an incomplete and/or unnatural way. We are re-factorizing our code base to address this issue.

Currently, user programs in our DSL are crafted by human operators. One approach to further simplify the
deployment is to train Large Language Models (LLM) to generate code in our DSL. This might be fruitful as
our DSL is mainly used by field application specialists without coding experience in traditional programming
languages.

8 Conclusion

This paper contributes a DSL for deploying perception-guided robotic manipulation at scale. This DSL
has an intuitive graphical frontend and is mainly used by machine operators without coding experience
in Python/C+4. To alleviate the users from manually making discrete decisions and/or crafting robot
trajectories, we propose a novel interface that integrates a TAMP algorithm into the DSL. In particular,
users craft a “skeleton” of the desired robot behavior with a set of intentionally undetermined parameters,
and the planning algorithm automatically generates these missing parameters during online execution. With
this interface, users can setup and solve practically important TAMP problems without understanding the
TAMP algorithm or explicitly writing the planning problem description (in a modeling language like PDDL).
Moreover, we propose a pre-planning interpreter to reduce the cycle time and improve the throughput of
the manipulation applications. Extensive practical applications in industry demonstrate the efficacy of our
method.

Acknowledgments

The authors would like to thank Xi Li and Lili Yang for their insightful discussion and maintenance of the
infrastructure code. This work was conducted during the authors’ employment at Mech-Mind Robotics. The
views expressed in this paper are those of the authors themselves and are not endorsed by the supporting
agencies.

References

Alami, R., Simeon, T., and Laumond, J.-P. (1990). A geometrical approach to planning manipulation tasks.
the case of discrete placements and grasps. In The fifth international symposium on Robotics research,
pages 453-463. MIT Press.

Andrychowicz, M., Baker, B., Chociej, M., Jozefowicz, R., McGrew, B., Pachocki, J., Petron, A., Plappert,
M., Powell, G., Ray, A., et al. (2018). Learning dexterous in-hand manipulation. arXiv preprint
arXw:1808.00177.

Burnett, M. M. and MclIntyre, D. W. (1995). Visual programming. COmputer-Los Alamitos-, 28:14-14.

Driess, D., Xia, F., Sajjadi, M. S., Lynch, C., Chowdhery, A., Ichter, B., Wahid, A., Tompson, J.,
Vuong, Q., Yu, T., et al. (2023). Palm-e: An embodied multimodal language model. arXiv preprint
arX1w:2303.03378.

Florence, P., Manuelli, L., and Tedrake, R. (2019). Self-supervised correspondence in visuomotor policy
learning. IEEFE Robotics and Automation Letters, 5(2):492-499.

Gao, W. and Tedrake, R. (2021). kpam 2.0: Feedback control for category-level robotic manipulation. IEEE
Robotics and Automation Letters, 6(2):2962-2969.

Garrett, C. R., Chitnis, R., Holladay, R., Kim, B., Silver, T., Kaelbling, L. P., and Lozano-Pérez, T. (2021).
Integrated task and motion planning. Annual review of control, robotics, and autonomous systems,
4:265-293.

Garrett, C. R., Lozano-Pérez, T., and Kaelbling, L. P. (2018). Sampling-based methods for factored task
and motion planning. The International Journal of Robotics Research, 37(13-14):1796-1825.

Geraerts, R. and Overmars, M. H. (2007). Creating high-quality paths for motion planning. The international
journal of robotics research, 26(8):845-863.

Hauser, K. and Latombe, J.-C. (2010). Multi-modal motion planning in non-expansive spaces. The Inter-
national Journal of Robotics Research, 29(7):897-915.

Kavraki, L. E., Svestka, P., Latombe, J.-C.; and Overmars, M. H. (1996). Probabilistic roadmaps for path
planning in high-dimensional configuration spaces. IEEFE transactions on Robotics and Automation,
12(4):566-580.

LaValle, S. M. and Kuffner Jr, J. J. (2001). Randomized kinodynamic planning. The international journal
of robotics research, 20(5):378-400.

Liang, J., Huang, W., Xia, F., Xu, P., Hausman, K., Ichter, B., Florence, P., and Zeng, A. (2023). Code as
policies: Language model programs for embodied control. In 2023 IEEE International Conference on
Robotics and Automation (ICRA), pages 9493-9500. IEEE.

Maldonado, A., Alvarez, H., and Beetz, M. (2012). Improving robot manipulation through fingertip percep-
tion. In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 2947-2954.
IEEE.

Pan, Z., Polden, J., Larkin, N., Van Duin, S., and Norrish, J. (2012). Recent progress on programming
methods for industrial robots. Robotics and Computer-Integrated Manufacturing, 28(2):87-94.

Ratliff, N., Zucker, M., Bagnell, J. A., and Srinivasa, S. (2009). Chomp: Gradient optimization techniques
for efficient motion planning. In 2009 IEEFE international conference on robotics and automation, pages
489-494. TEEE.

RoboDK (2015). https://robodk.com/offline-programming,.
Robotmaster (2002). https://www.robotmaster.com/en.
RobotStudio (1988). https://new.abb.com/products/robotics/robotstudio.

Schulman, J., Duan, Y., Ho, J., Lee, A., Awwal, 1., Bradlow, H., Pan, J., Patil, S., Goldberg, K., and
Abbeel, P. (2014). Motion planning with sequential convex optimization and convex collision checking.
The International Journal of Robotics Research, 33(9):1251-1270.

Srivastava, S., Fang, E., Riano, L., Chitnis, R., Russell, S., and Abbeel, P. (2014). Combined task and
motion planning through an extensible planner-independent interface layer. In 2014 IEEE international
conference on robotics and automation (ICRA), pages 639-646. IEEE.

Su, B. Y., Wei, Z., McCann, J., Yuan, W., and Liu, C. (2023). Customizing textile and tactile skins for
interactive industrial robots. ASME Letters in Dynamic Systems and Control, 3(3).

Tsai, C.-Y. (2019). Improving students’ understanding of basic programming concepts through visual pro-
gramming language: The role of self-efficacy. Computers in Human Behavior, 95:224-232.

Wittenberg, G. (1995). Developments in offline programming: an overview. Industrial Robot: An Interna-
tional Journal, 22(3):21-23.

Xia, Z., Deng, Z., Fang, B., Yang, Y., and Sun, F. (2022). A review on sensory perception for dexterous
robotic manipulation. International Journal of Advanced Robotic Systems, 19(2):17298806221095974.

Zeng, A. Florence, P., Tompson, J., Welker, S., Chien, J., Attarian, M., Armstrong, T., Krasin, I., Duong,
D., Sindhwani, V., et al. (2021). Transporter networks: Rearranging the visual world for robotic
manipulation. In Conference on Robot Learning, pages 726-747. PMLR.

	Introduction
	Related Work
	Robot Offline Programming Software
	Integrated Task and Motion Planning
	Manipulation Pipelines

	Preliminary
	Control Flow Graph
	Specialization for Pick-and-Place Manipulation Applications

	Interface with Robot Behavior Planning
	Illustrative Example
	Nodes for Robot Movement
	Node for Object Picking
	Structure of Plan Routines

	Interpreter Implementation
	Planning Algorithm
	Pre-Planning Mechanism

	Results
	Representative Examples
	Effectiveness of the Pre-Planning Mechanism

	Limitations and Future Works
	Conclusion

