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Abstract— The idea of using multiple models to cope with pa-
rameter uncertainties in adaptive systems was first introduced
in the 1990s. Conventionally, methods based on this mechanism
typically suffer from ”curse of dimension,” which means that
the number of required identification models grows exponen-
tially with respect to the number of unknown parameters. In
this paper, the parameter identification problem is formulated
as a time-varying optimization procedure, and a guided multiple
model search framework is proposed to solve it. Instead of
sampling the identification models in a large parameter space,
models are sampled locally and used to estimate the search
direction. As a result, the number of needed identification
models grows linearly in this approach, in comparison with
the exponential growth of existing methods. The proposed
method also provides a unified form for nonlinear systems
with non-affine unknown parameters, which is out of the
scope of classical adaptive control theory. Moreover, theoretical
convergence analysis is provided with specific conditions. The
effectiveness of the proposed approach is verified by simulations
and comparisons with existing methods.

I. INTRODUCTION

Coping with systems with parameter uncertainties is a

long-standing problem in control theory and applications. For

systems with affine unknown parameters, it is well known

that the classic adaptive control is an effective solution.

When parameter initial errors are large or systems are

oscillatory, multiple models (observers, agents) based control

schemes [1-10], were introduced to improve the transient

performance.
Multiple-model based control was first introduced by

Athans et al. [1] on the design of Multiple Kalman Filters,

where no switch among models was involved and no guaran-

tee of stability was considered, similarly in [2], [3] and [4].

In the 1990s, Narendra and Balakrishnan [5] incorporated

model switching and tuning into multiple model control

framework, which aimed to accelerate the convergence rate

of the parameter estimation. Following this, several variants

were developed, including switching among fixed models

([6] and [7]), switching and tuning among adaptive models

([8] and [9]), and the hybrid combination of fixed and

adaptive models. The common principle of these approaches

is to sample the identification models in a large parameter

space, and choose one model at each instant to determine

the control input. Besides, the concept of multiple models

with switching and tuning was also applied in identification

problems, including parameter estimation [10] and combined

state and parameter estimation [11].
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Although many simulations and experiments, e.g. [12],

[20] and [21], have shown that multiple model control

performs satisfactorily if sufficient amount of identification

models are used, there still exist two main challenges. First,

to assure that at least one of the identification models is

sufficiently close to the real system, the number of required

identification models grows exponentially with the number of

unknown parameters. Second, the identification models are

usually sampled in a large parameter space. Consequently,

different models might be too far away from each other to

be relevant, which makes them almost ”useless” in locating

the unknown real system parameters. Namely, only the

model with the best performance will be chosen, and other

models are severely under-utilized. A second level adaption

presented in [13] achieved fast convergence with only a

small number of models. However, this approach is limited

to linear time-invariant (LTI) systems only.

To address these challenges, we formulate the parameter

identification problem as a time-varying optimization proce-

dure, and utilize a guided multiple model search framework

to solve it. Instead of sampling models in a large parameter

space, local sampling strategy is used to make identification

models close to each other. Then, multiple models are

used to estimate the search direction, and the identification

models are updated by line search. Under conditions of

persistency of excitation, local convexity, and local Lipschitz

continuity, the proposed method guarantees the convergence

of parameter estimation. The estimated parameters can then

be used to determine the control input online.

Compared with existing multiple model control schemes,

the proposed method significantly reduces the number of

required models from exponential complexity to liner com-

plexity, as well as the amount of computation. Moreover,

it also provides a unified form for nonlinear systems with

non-affine unknown parameters, which is out of the scope

of the classical adaptive theory. In various real-world sys-

tems, like neural network control, robotics, and nonlinear

models in finance, classes of problems are arising where

efficient algorithms for non-affine parameters identification

are required. The method presented in this paper provides an

efficient solution for those problems.

This paper is organized as follows. In Section II, the

mathematical notations and preliminaries are introduced.

The proposed search framework is explained in Section

III. In Section IV, the proposed framework is incorporated

into parameter identification, with theoretical analysis on

boundness and convergence. Simulations are presented in

Section V. Section VI concludes the paper.
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II. NOTATIONS ADN PRELIMINARIES

A. Notations

Throughout this paper, the following notations are

used. Let R=(−∞,∞), R≥0=[0,∞), N={0, 1, 2, ...}, and

N
+={1, 2, 3, ...} be the set of real numbers, non-negative

real numbers, natural numbers and positive natural numbers.

For vectors x1 ∈ R
n1 and x2 ∈ R

n2 , (x1, x2) denotes the

vector [xT
1 , x

T
2 ]

T ∈ R
n1+n2 . For a vector x ∈ R

n, ‖x‖k
denotes the k-norm of the vector x. Some special cases

include the infinity norm ‖x‖∞=max(|x1|, |x2|, ..., |xn|),
and the Euclidean norm ‖x‖2=

√
x2
1 + x2

2 + ...+ x2
n, where

x1, x2, ..., xn are the elements of x. By default, ‖x‖=‖x‖2.

A continuous function α: R≥0→R≥0 is called a class K
function, if α(0)=0 and α is strictly increasing. Additionally,

if limx→∞ α(x)=∞, then α is called a class K∞ function.

The hyper-ball centered at ζ with a radius of r is denoted

as B(ζ, r) := {x|r ≥ ‖x − ζ‖}. The hyper-cube centered

at ζ with a length of 2l is denoted as H(ζ, l) := {x|l ≥
‖x−ζ‖∞}. For any Δ > 0, MΔ denotes the set of piecewise

continuous functions from R≥0 to H(0,Δ).

B. System, Identification Model and Monitoring Signal

Consider the following deterministic system

ẋ(t) = f(x(t), p∗, u(t)) (1)

y(t) = h(x(t), p∗) (2)

where x(t) ∈ R
nx is the state vector, u(t) ∈ R

nu is the

control input, y(t) ∈ R
ny is the output vector, p∗ ∈ R

np is

the unknown parameter vector, np is the number of unknown

parameters, and f(x, p, u) and h(x, p) are known functions.

The unknown parameter vector p∗ is assumed to be constant

and belong to a known compact set Θ. For any initial

state x0 and piecewise-continuous input u(t), the system

generates a unique solution that is defined for t ≥ 0. If the

state is measurable, let h(x, p)=x and y(t)=x(t). Otherwise,

only y(t) is measured and x(t) needs to be recovered from

y(t). As this paper is focused on parameter estimation, it is

assumed a robust control input u(t) is known to prevent x(t)
from divergence.

A set of identification models is constructed, each is

associated with a parameter estimate p. Thus, the dynamic

equation that governs all of the identification models is

˙̂x(t) = f̂(x̂(t), p, u(t), y(t)) (3)

where x̂(t) is the state vector of the identification model, p
is the corresponding parameter estimate, and u(t) and y(t)
are the control input and the measured output of real plant

(1). Note that the classic adaptive law might be inapplicable

for such system as (1), since the unknown parameters p
in f(x, p, u) might be non-affine.

Let x̃(t)=x̂(t)−x(t) denote the state error, and

ỹ(t)=ŷ(t) − y(t) denote the output error. The error

dynamic is

˙̃x(t) = f̂ − f = F (x̃(t), x(t), p, p∗, u(t)). (4)

A basic assumption on the design of identification mod-

els is that if x̃(t0)=0 and p=p∗ at time t0, it must be

F (x̃, x, p, p∗, u)=0 and x̃(t)=0 for any t > t0, i.e., zero

response for correct parameters. Some typical designs of the

identification models can be found in [6], [11] and [18].

To evaluate the performance of an identification model

over a period of time, a monitoring signal is defined. Similar

to [9], we adopt the following weighted norm error for each

identification model as the monitoring signal

μ(tstart, t, p, x̃tstart) =

∫ t

tstart

w(τ)‖ỹ(τ)‖2dτ (5)

where tstart and t specify the time period, p is the parameter

estimate associated with the identification model, x̃tstart is

the initial state error, w(τ) is a bounded strict positive weight

function. A widely used weight function is the exponentially

decaying weight, namely

w(τ) = exp(−λ(t− τ)) (6)

where λ > 0, and the monitoring signal can then be

computed as

μ̇ = −λμ+ ‖ỹ(t)‖2
μ(tstart) = 0

(7)

If all the identification models are initialized identically at

tstart, the explicit dependency of μ(tstart, t, p, x̃tstart) over

x̃tstart can be dropped. The motivation is that, when the

identification models are initialized or redistributed, their

initial states are set to x̂0, which is our best state estimate at

time tstart. If the state is measurable, their initial states can

be set to true state measured from the real plant. Thus, the

monitoring signal can be written into μ(tstart, t, p). When the

context is clear, the monitoring signal is abbreviated into μ.

In multiple model control schemes, such as [8] and [9],

the designer can use an arbitrary number of models to

identify the plant, but only one controller to control it. It

therefore follows that N identification models (with the same

structure as defined in (3)) can be set up to provide N
parameter estimates p1, p2, ..., pN . Based on the monitoring

signal μ, one of the models is selected to determine the

overall parameter estimate at any time instant t, and it is

used at that instant to determine the control input u(t).

III. GUIDED MULTIPLE-MODEL SEARCH

FRAMEWORK

The parameter identification problem in multiple model

control can be cast into a time-varying optimization:

minimize
p

: μ(tstart, t, p) (8)

where μ is the monitoring signal in (5), tstart is the start time,

t is current time instant, and the parameter estimate p is the

decision variable. From this perspective, existing multiple

model control schemes, such as [8] and [11], typically

use exhaustive search to solve (8). In these approaches,

identification models are sampled in a large parameter space,

such as the known compact set Θ, and one identification

model with minimal μ is selected as the solution of (8) at

any time instant t.
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In this paper, we propose to use guided search to solve

(8). The guide information is obtained from known models

with their performance indices. To be more specific, the

associated monitoring signal μ of each identification model

might indicate its parameter estimation quality, i.e., how far

is p away from p∗ in some metric. Thus, along the direction

that minimizes μ(tstart, t, p) over p, it is likely to find new

identification models with better estimation quality, although

(8) is time-varying. Moreover, the direction that minimizes

μ(tstart, t, p) over p can be approximated by existing models.

Such concept can be naturally incorporated into multiple

model control, in which different models are sampled in the

parameter space, and their monitoring signals are computed.

As shown in Fig. 1, iterative update is incorporated into

multiple model algorithm with the following steps:

1) Local sampling and simulation: Let i be the iteration

number, given a parameter estimate pi−1 where the gradient

computation is anticipated, local sampling centred at pi−1

is performed, as shown in Fig. 1 (b). After sampling, these

models are simulated alongside the real system for a period

T and their associated monitoring signals (5) are computed.

2) Search direction computation: Given a set of n mod-

els sampled in the vicinity of pi−1 and their associated

monitoring signals μj , j = 1, 2..n. This step computes the

direction Δpi−1 that locally minimizes μ. A straightforward

choice of search direction is the negative gradient of μ. Other

more sophisticated approaches include momentum gradient,

adaptive gradient, etc.

To estimate the gradient of μ over p ∈ R
np , direct

finite difference method requires np+1 identification models,

where np is the number of unknown parameters. However,

μ might be corrupted by disturbance or noise. Therefore,

we use 2np ∼ 3np models and RANSAC [16] method for

gradient computation in our implementation.

3) Line search: As shown in Fig.1 (d), the line search is used

to locate new prospective model along the computed search

direction Δpi−1, i.e.,

pi = pi−1 + αΔpi−1 (9)

where α is the search step. Line search should ensure the

updated model pupdated = pi is in the known compact set Θ,

otherwise α will be discounted by a damping factor β < 1.

Local sampling at pi is also required, as shown in Fig. 1.

The algorithm above is summarized in Algorithm. 1 at

the next page. The proposed framework preserves a set of

models. We name it ModelSet, which is initialized by local

sampling at one or more initial guesses. The algorithm per-

forms an iterative update of ModelSet. In each iteration, all

the models are simulated for a period T , and their associated

monitoring signals μ are computed. Then, the model with

best estimation performance pbest is used to perform the

update step, which results in a new model pupdated. After

that, local sampling at pupdated is performed and all the

newly generated models are inserted into ModelSet.
As mentioned by Buchstaller and French [14], a

ModelSet should have better performance bound than any of

(a) (b) (c) (d)

Fig. 1: Illustration of a sampling and update step. (a) The

parameter estimate pi−1 (b) Local sampling and simulation

(c) Search direction computation at pi−1 (d) Line search from

pi−1 to pi along Δpi−1.

its subsets. Furthermore, a larger ModelSet is more robust

to disturbance and noise. However, the size of ModelSet
is limited by computational resource. Thus, some inferior

models must be discarded as a trade-off among performance

and tractability.

IV. PARAMETER IDENTIFICATION WITH GUIDED

SEARCH FRAMEWORK

In this section, the proposed framework in Section III is

incorporated into the parameter estimation problem. Bound-

ness and convergence analysis of the parameter identification

is also provided. For simplicity, our analysis is focused

on the cases with minimal ModelSet, which means only

one identification model and its local sampling models are

preserved in ModelSet at each instant.

The following assumptions are made concerning system

(1) and the identification model dynamics (3). For simplicity,

the monitoring signal (5) is abbreviated as μ(t, p) by setting

tstart = 0, when the context is clear.

Assumption 1: The states of system (1) can be measured,

thus y(t) = x(t).
Assumption 2: For all Δx,Δu ≥ 0, there exist a class

K∞ function αx̃ and a constant Tf (Δx,Δu) > 0, such that

for all p ∈ Θ, x(0) ∈ H(0,Δx) and for some u ∈ MΔu ,

the corresponding error x̃ satisfies: for any t ≥ Tf

∫ t

t−Tf

‖x̃(τ)‖2dτ ≥ αx̃(‖p− p∗‖) (10)

Remark 1: Assumption 2 is known as the Persistency of
Excitation (PE) condition in adaptive literatures. It differs

from classical PE in the sense that we consider a family of

systems (4) parameterized by p. It is shown that assumption

2 can be verified by classic PE for some systems. One may

refer Chong, et al [11] for more details.

The above assumptions ensure the unqiue optimality of

the real system parameter p∗:

Proposition 1: If Assumptions 1 and 2 hold, there exists

a time instant Tf , such that for any t > Tf , p∗ is the unique

minimizer of μ(t, p). Furthermore, for any t > Tf and p �=
p∗,

μ(t, p) ≥ wαx̃(‖p− p∗‖) (11)

where w is the minimum of weight function w(τ) over

[t−Tf , t]. To show the convergence of parameter estimation
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Algorithm 1: High Level Algorithm of Guided Search Framework

1 Initialize the ModelSet;
2 while system is running do
3 Simulate all identification models for period T , compute monitoring signal μ;

4 pbest ← Select Best Model(ModelSet);
5 Δp ← Compute Search Direction(pbest);
6 Check termination conditions;

7 pupdated ← Linear Search Update Model(pbest,Δp);
8 ModelSet ← ModelSet ∪ Local Sample Models(pupdated,Θ, n);
9 Discard some old models from ModelSet;

10 end

process, the following assumptions introduced in convex

optimization [15] are adopted:

Assumption 3: Local Convexity. There exists a convex set

Ω(t) in the vicinity of p∗, such that p∗ ∈ Ω(t) and the

function μ(t, p) is convex with respect to p in Ω(t).
Assumption 4: Continuity. For any t, the objective function

μ(t, p) is differentiable with respect to p, and additionally

‖∇pμ(t, p1)−∇pμ(t, p2)‖ ≤ L(t)‖p1 − p2‖ (12)

for any p1, p2 inside Ω(t), i.e., ∇μ(t, p) is Lipschitz contin-

uous with L(t) at time t.
Remark 2: The continuity of μ(t, p) with respect to p

at time t can be verified by the continuity and local Lip-

schitz continuity of function F (x̃, x, p, p∗, u) over p and x̃,

where F (x̃, x, p, p∗, u) is defined in (4). The detailed analysis

is presented in Appendix.

Remark 3: For nonlinear system with affine unknown

parameters, μ(t, p) is a quadratic function of p:

μ(t, p) = (p− p∗)TQ(t)(p− p∗) (13)

where Q(t) is positive semidefinite for any t ≥ 0. If

t > Tf , where Tf is defined in assumption 2, then Q(t)
is positive definite. The convex set Ω(t) in assumption 3

is R
nx , ∇pμ(t, p2) is a affine function Q(t)(p − p∗) of p,

and Lipschitz continuity of ∇pμ(t, p2) holds. Thus, all above

assumptions are satisfied. The analysis is shown in Appendix.

Based on the assumptions above, the convergence prop-

erties of the proposed search framework are discussed in

the following subsections. Our discussion is divided into

two cases, the offline identification and online identification,

according to whether u(t) and x(t) are stored in the memory

and can be used repeatedly.

A. Offline Identification

In offline identification, the input u(t) and the state x(t)
of the original plant (1) are recorded from time tstart to

tend. Thus, the function μ(tstart, tend, p) can be evaluated

for any p by resetting x̂(tstart) = x(tstart), simulating the

system from tstart to tend with parameter p, and computing

the monitoring signal μ. As the recorded input u(t) and state

x(t) from tstart to tend are used, the dependency of Ω and L
on t in (12) can be dropped, and both Ω and L are constants.

Therefore, the parameter identification is formulated into an

standard optimization problem, and its convergence can be

stated as follows:
Proposition 2: In offline identification, with assumptions

1-4 satisfied, the parameter estimate p will converge to p∗

if 1) p0 is initialized inside Ω; 2) α ≤ 1/L, where α is the

search step in (9). The convergence rate satisfies

μ(tstart, tend, pk)− μ(tstart, tend, p
∗) ≤ ‖p0 − p∗‖2

2αk
(14)

where k is the number of iterations. For the proof of this

proposition, refer to Boyd and Vandenberghe [15].

B. Online Identification
In online identification, the search framework with mul-

tiple models is executed in parallel with the real system

(1). u(t) and x(t) are obtained by measurement, and they

are used to compute the monitoring signals μ of current

identification models. No buffer or memory is required to

store u(t) or x(t) in online identification.
In comparison with offline identification, online identifi-

cation may be able to react to some time-varying effects,

such as the slowly changing unknown parameters. Besides,

online identification does not need any additional memory to

store x(t) and u(t) for a long period with a high sampling

rate. Thus, online identification is more suitable for real-time

controllers.
Before presenting the main results of this section, some

notations are clarified. Let t0=0 be the initial time of the

real system (1). At time ti, where i=1, 2, ..., the search

framework performs the ith update of the parameter estimate.

Let p−i be the estimated parameter vector before update, and

p+i be the estimated parameter vector after update, hence

p−i = p+i−1. The states of identification models are reset at ti,
thus x̃(t+i ) = 0. The monitoring signals as functions of p are

collected as μi(p)=μ(ti−1, ti, p), i=1, 2, ..., with associated

Ωi in assumption 3, weight function wi(t) in (5), Li in

assumption 4 and search step αi in (9). Let Ω =
⋂∞

i=1 Ωi.

Ω is non-empty for p∗ ∈ Ω.

1) Boundness
Theorem 1: In online identification, with assumptions 1-4

satisfied, if 1) p0 is initialized inside Ω; 2) αi ≤ 1/Li, where

αi is the search step in (9), then

‖p−i − p∗‖2 ≥ ‖p+i − p∗‖2 (15)
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in each update step i, and the inequality becomes equality if

and only if p+i = p∗.

Proof: See Appendix.

2) Convergence
In the next theorem, the convergence of parameter estimate

is established. The following assumption is made concerning

the sequence {Li}.

Assumption 5: The sequence {Li} is bounded by L. Thus,

there exists a search step sequence {αi} and a constant c <
1/L, such that αi > c > 0, i = 1, 2, ...

Remark 4: Assumption 5 means that it is possible to make

a non-vanishing step for each parameter update. For nonlin-

ear system with affine unknown parameters, assumption 5

can be ensured if the dwelling time ti − ti−1 is bounded,

where i = 1, 2, .... Refer to Appendix for detailed analysis.

Theorem 2: In online identification, with assumptions 1-

5 satisfied, the parameter estimate p will converge to p∗ if

1) p0 is initialized inside Ω; 2) weight functions wi(t) are

selected such that there exists a 0 < w ≤ wi(t) for any i
and t ∈ [ti−1, ti]; 3) c < αi ≤ 1/Li, where αi is the search

step in (9).

Proof: See Appendix

Remark 5: Unlike offline identification, online identifica-

tion does not assure the boundness of the convergence rate.

Remark 6: Even if the parameter estimate does not con-

verge, i.e. some assumptions such as the state measurability

and the persistency of excitation are not satisfied, it can

still be beneficial to use the proposed search framework.

The idea is that the optimization procedure usually finds

a better estimate in some metric compared with an initial

guess, although it might oscillate in the vicinity of local

optima.

V. SIMULATIONS

To illustrate the concepts discussed in the preceding sec-

tions, simulations are conducted on several examples. Online

identification is used for all examples in this section.

A. A nonlinear system with affine unknown parameters

To test our convergence result presented in section IV, we

tested on a nonlinear system with affine unknown parameters.

The dynamics of the system is

ẋ = Ax+Bu+ g(x, u)p∗ (16)

and the design of identification model is adopted from [18]

˙̂x = Ax+Bu+ g(x, u)p+ k(x(t)− x̂) (17)

where x=(x1, x2), B=(0, 1), p=(p1, p2, p3), u ∈ R, and

g1=(0, sin(x1+x2)), g2=(0, exp(x1+u)), g3=(0, x2
1+x2),

k is a positive gain matrix. The value of true parame-

ters are p∗1=12, p∗2=2, p∗3=5. The initial guess is set as

p=(−5,−5,−7). A termination condition to stop the search

procedure in our search framework is:

‖∇pμ‖ < cterminate (18)

where cterminate=0.3. The dwelling time is set to be 4s.
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Fig. 2: Parameter estimation error of system in section V-A.

Figure 2 depicts the Euclidean norm of parameter estima-

tion error ‖p− p∗‖ over time. In the 9th iteration of search,

the computed ∇pμ triggers the termination condition. The

final estimated parameter is p=(12.01, 1.93, 5.08).

B. A nonlinear disturbed system with non-affine parameters

To test the applicability and robustness of the proposed

search framework, a simulation study was performed on

the following nonlinear system with non-affine unknown

parameters,

ẋ1 = x2

ẋ2 = u+ p∗1(x1 + sin(x1)) + 14sin(p∗2x2)

+ exp(p∗3x1) + Δ

(19)

with identification model dynamic

˙̂x1 = x2 + k1(x1 − x̂1)

˙̂x2 = u+ p1(x1 + sin(x1)) + 14sin(p2x2)

+ exp(p3x1) + k2(x2 − x̂2)

(20)

where the true parameter vector is p∗=(12, 2, 1), and Δ is

a disturbance term. In this example, Δ is modeled as zero-

mean Gaussian noise with standard deviation of σ=0.1. x1 is

driven to track a desired sinusoidal trajectory xdes=sin(2t).
Totally nine identification models are used in parallel. The

control input u is designed to be

u = ufeedforward + ufeedback + urobust + ucompensate

ufeedforward = ẍdes

ufeedback = kp(xdes − x1) + kd(ẋdes − x2)

ucompensate = −(p1(x1 + sin(x1)) + 14sin(p2x2)

+ exp(p3x1))

(21)

where p = (p1, p2, p3) is the parameter estimate, and

the design of urobust is described in [22]. The estimated

parameter are initialized at p0=(8.5, 2.7, 3.0), the search step

is α=0.03 and the dwelling time is Tf=4s.
The tracking error of the system with and without the

proposed search framework is depicted in Fig. 3. The cor-

responding estimation error is depicted in Fig. 4. The final

estimate is p=(11.92, 2.12, 0.93). Due to the existence of

noise, the parameter estimates do not converge to the true
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(a) Tracking error of system in section V-B without the proposed search
framework.
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(b) Tracking error of system in section V-B with the proposed search
framework.

Fig. 3: Tracking error of system in section V-B with/without

the proposed search framework.
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Fig. 4: Parameter estimation error of system in section V-B

values. However, we do obtain much better parameter esti-

mates in comparison with the initial guess, and the transient

performance of the controller is significantly improved.

C. Comparison with existing methods

As summarized in [14] and [17], model re-distribution

methods were used in adaptive control to improve the tran-

sient performance. Ignoring the non-essential difference in

their formulation, the central idea of these approaches is to

move the identification models close to the one with the best

identification performance.

To show the efficiency of the proposed method, a compar-

ison is made between our method and the dynamic sampling

approach in [11], which is a typical model-redistribution

approach. The two algorithms are executed on the system

described in section V-B. Our platform is a MacBook Pro

with 2.7 GHz Intel Core Quad processor, running Matlab

environment. The comparative result is shown in Table. I.

From the comparison, the proposed method not only outper-

forms in parameter estimation accuracy but also significantly

reduces computational load.

Proposed Dynamic Sampling
Number of used models 9 64 (4× 4× 4)
Computation time [s] 95 774
System running time [s] 170 170
Estimation error 0.16 2.03

TABLE I: Comparison between the proposed method and

the dynamic sampling method on system (42). The pro-

posed method provides better estimation accuracy, uses fewer

identification models and saves computational resource in

comparison with the dynamic sampling method.

Fig. 5: The proposed method is applied to a simulated Atlas

humanoid robot. Figure shows snapshots of a consecutive

step of the walking task used as the exciting trajectory.

D. Application to a simulated humanoid robot

The proposed method is applied on the mass identification

of several links of a simulated full-scale humanoid robot.

The walking task shown in Fig. 5 is used as the exciting

trajectory and the mass of seven links related to walking

(torso, left/right foot, left/right calf and left/right thigh) are

assumed unknown.

The dynamic equation of a humanoid is

H(q)q̈ + C(q, q̇) = τ + JT f (22)

and the identification model is

Ĥ(q)¨̂q+ Ĉ(q, q̇) = τ +JT f +K1(q− q̂)+K2(q̇− ˙̂q) (23)

where q and q̂ are generalized positions, H and Ĥ are mass

matrices, C and Ĉ are bias forces, τ is the torque input. f
is the ground reaction force measured by simulated sensors

and J is the contact Jacobian. The state vector is x = (q, q̇).
There are 7 unknown parameters and 24 models are used.

Figure 6 depicts the L2 mass error over time. The initial

L2 mass error is approximately 6 kg. After more than 20

iterations, the L2 error is less than 0.5 kg.

VI. CONCLUSION

The contribution of this paper is two-fold: first, we in-

troduce the guided search framework into multiple model

control scheme. To our best knowledge of current literature,

this is the first effort to perform guided search in multiple

models based tuning and switching framework, and carry out

the update of the model set by descent algorithm. Second, the
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Fig. 6: Mass estimation error of the simulated humanoid

robot.

convergence of parameter estimate under certain conditions

is established. The number of needed identification models

in the proposed method grows linearly with respect to the

number of unknown parameters, in comparison with the

exponential growth of existing methods. Thus, the proposed

method shows significant improvement in computational

efficiency. Besides, the proposed framework allows us to

treat non-linear system with non-affine unknown parameters

in a unified and modularized form, which circumvents the

complicated and problem-specific linearization process. Sim-

ulation results demonstrate the efficiency and robustness of

the proposed method.

REFERENCES

[1] M. Athans, D. Castanon, K.P. Dunn, C. Greene, W. Lee, N. Sandell,
and A. Willsky, ”The stochastic control of the F-8C aircraft using a
multiple model adaptive control (MMAC) method–Part I: Equilibrium
flight.” IEEE Transactions on Automatic Control, 22(5), pp.768-780,
1977.

[2] D. W. Lane and P. S. Maybeck, ”Multiple model adaptive estimation
applied to the Lambda URV for failure detection and identification”
Decision and Control, Proceedings of the 33rd IEEE Conference on,
Vol. 1, pp. 678-683, 1994.

[3] R. L. Moose, H. F. Vanlandingham, and D. H. McCabe, ”Modeling
and estimation for tracking maneuvering targets.” IEEE Transactions
on Aerospace and Electronic Systems, (3), pp.448-456, 1979.

[4] D. G. Lainiotis, ”Partitioning: A unifying framework for adaptive
systems, I: Estimation.” Proceedings of the IEEE, 64(8), pp.1126-1143,
1976.

[5] K. S. Narendra and J. Balakrishnan, ”Performance improvement in
adaptive control systems using multiple models and switching.” Pro-
ceedings of the seventh Yale workshop on adaptive learning system,
pp. 2733, Center for Systems Science, Yale University, New Haven,
CT, 1992.

[6] A. S. Morse, ”Supervisory control of families of linear set-point
controllers Part 1. Exact matching.” IEEE Transactions on Automatic
Control, 41(10), pp.1413-1431, 1996.

[7] A. S. Morse, ”Supervisory control of families of linear set-point con-
trollers. Part 2. Robustness.” IEEE Transactions on Automatic Control,
42(11), pp.1500-1515, 1997.

[8] K. S. Narendra and J. Balakrishnan, ”Improving transient response of
adaptive control systems using multiple models and switching.” IEEE
Transactions on Automatic Control, vol. 39, no. 9, pp. 1861-1866, 1994.

[9] K. S. Narendra and J. Balakrishnan, ”Adaptive control using multiple
models,” IEEE Transactions on Automatic Control, vol. 42, no. 2, pp.
171-187, 1997.

[10] D. G. Lainiotis, ”Partitioning: A unifying framework for adaptive
systems, I: Estimation.” Proceedings of the IEEE, 64(8), pp.1126-1143,
1976.

[11] M. S. Chong, D. Nesic, R. Postoyan, and L. Kuhlmann, ”Parameter
and state estimation of nonlinear systems using a multi-observer under
the supervisory framework.” IEEE Transactions on Automatic Control,
60(9), pp.2336-2349, 2015.

[12] L. Vu and D. Liberzon, ”Supervisory control of uncertain linear time-
varying systems,” IEEE Transactions on Automatic Control, vol. 56,
no. 1, pp. 27-42, 2011.

[13] Z. Han, and K. S. Narendra, ”New concepts in adaptive control using
multiple models.” IEEE Transactions on Automatic Control, 57(1),
pp.78-89, 2012.

[14] D. Buchstaller, and M. French, ”Robust Stability for Multiple Model
Adaptive Control: Part I-The Framework.” IEEE Transactions on Au-
tomatic Control, 61(3), pp.677-692.

[15] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge
university press, 2004.

[16] M. A. Fischler and R. C. Bolles, R.C, ”Random sample consensus:
a paradigm for model fitting with applications to image analysis and
automated cartography.” Communications of the ACM, 24(6), pp.381-
395, 1981.

[17] K. S. Narendra and Z. Han, ”The changing face of adaptive control:
the use of multiple models.” Annual reviews in control, 35(1), pp.1-12,
2011.

[18] V. Adetola and M. Guay, ”Finite-time parameter estimation in adaptive
control of nonlinear systems.” IEEE Transactions on Automatic Control,
53(3), pp.807-811, 2008.

[19] V. K. Pandey, I. Kar and C. Mahanta, ”Multiple models and sec-
ond level adaptation for a class of nonlinear systems with nonlinear
parameterization.” IEEE International Conference on Industrial and
Information Systems, pp. 1-6, 2014.

[20] Y. Zhou and Z. Zhang, ”High-speed train control based on multiple-
model adaptive control with second-level adaptation.” Vehicle System
Dynamics, 52(5), pp.637-652, 2014.

[21] L. Giovanini, G. Sanchez, and M. Benosman, ”Observer-based adap-
tive control using multiple-models switching and tuning.” IET Control
Theory Applications, 8(4), pp.235-247, 2014.

[22] B. Yao, ”Integrated direct/indirect adaptive robust control of SISO
nonlinear systems in semi-strict feedback form.” American Control
Conference, Vol. 4, pp. 3020-3025). 2003.

[23] D. P. Bertsekas and J. N. Tsitsiklis, ”Gradient convergence in gradient
methods with errors.” SIAM Journal on Optimization, 10(3), pp.627-
642, 2000.

APPENDIX

A. Analysis of Remark 2
Remark 2 can be formally stated as follows. For any finite

t, μ(t, p) is continuous with respect to p, if the function

F (x̃, x, p, p∗, u) in (4) is continuous and locally Lipschitz

continuous with respect to p and x̃, for the given state x(t)
and input u(t) of the original plant (1).
Proof : Remark 2 will be proved by Poincare Map. Let

x̃(tstart : tend, p, η) (24)

denote the solution of (4) at time tend, if (4) is initialized

at t=tstart with x̃=η and parameter p, for given u(t) and

x(t). By using Poincare Map theorem, x̃(tstart : tend, p, η)
is continuous with respect to p and η.

As [tstart, tend]×Θ is compact, x̃(tstart : τ, p, η) is uni-

formly continuous with respect to τ and p. Thus, for any

p, p̄ ∈ Θ, tstart ≤ τ ≤ tend and ε > 0, there exists δ, such

that ‖p− p̄‖ < δ implies,

‖x̃(tstart : τ, p, η)− x̃(tstart : τ, p̄, η)‖ < ε (25)

Moreover, recall the definition of μ in (5) and let K be

the upper bound of w(t), for tstart ≤ τi ≤ tend. Then with

(25), for any p, p̄ ∈ Θ and ε > 0, there exist δ > 0, such

that if ‖p− p̄‖ < δ,

‖μ(tstart, tend, p)− μ(tstart, tend, p̄)‖ < KTε2 (26)
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where T=tend− tstart. The continuity of μ over p is proved.

B. Proof of Remark 3

Consider a non-linear system with affine unknown param-

eters, as studied in [18]

ẋ(t)=f(x(t), u(t)) + g(x(t), u(t))p∗ (27)

and the associated identification model

˙̂x(t)=f(x(t), u(t)) + g(x(t), u(t))p+ k(t)x̃(t) (28)

where x(t) ∈ R
nx , u(t) ∈ R

nu , p ∈ R
np are state

vector, control input vector and unknown parameter vector,

respectively. f(x, u) ∈ R
nx and g(x, u) ∈ R

nx×np are

continuous functions. x̃(t)=x(t)− x̂(t) is the tracking error

of identification model, k(t) is a positive gain matrix in the

form of diag(k1(t), k2(t), ..., knx
(t)), ki(t) ≥ 0. The error

dynamic is

˙̃x(t) + k(t)x̃(t) = g(x(t), u(t))(p∗ − p) (29)

Suppose x(t) and u(t) are provided, (29) is a linear

differential equation of x̃. x̃(0)=0 because identification

models will be reinitialized after each sampling. Thus, the

solution of error dynamic (29) is linear with respect to p−p∗,

which can be represented as

x̃(t) = G(t)(p∗ − p) (30)

and the monitoring signal is

μ(t, p) = (p∗ − p)
T
(

∫ t

0

w(τ)G(τ)
T
G(τ)dτ)(p∗ − p) (31)

The matrix M(t)=
∫ t

0
w(τ)G(τ)

T
G(τ)dτ is positive

semidefinite for t ≥ 0. Thus, μ(t, p) is a quadratic function

of p. If t > Tf , where Tf is defined in assumption 2,∫ t

0
w(τ)G(τ)

T
G(τ)dτ is positive definite. For t > Tf the

problem has an unique solution p=p∗.

C. Analysis of Remark 4

Consider the system studied in (27), from (31) one obtains

μi(p) = (p∗ − p)
T
(

∫ ti

ti−1

w(τ)G(τ)
T
G(τ)dτ)(p∗−p) (32)

where G(t) is defined in (30). Let Mi =∫ ti
ti−1

w(τ)G(τ)
T
G(τ)dτ , thus

Li ≤ λmax(Mi) (33)

where λmax(Mi) is the maximum eigenvalue of the positive

semi-definite matrix Mi. If x(t) and u(t) are bounded,

which can be achieved by robust control schemes like [22],

g(x(t), u(t)) must be bounded, for the continuity of g(x, u).
Thus, x̃(t) in (29) and G(t) in (30) are bounded. If there

exists a Tupper, such that ti − ti−1 < Tupper, i=1, 2, ...,
then Mi and all its eigenvalues are bounded. As a result, the

sequence {Li} is bounded.

D. Proof of Theorem 1
From assumption 4 and the equation 2.4 of [23], for any

p1, p2 in Ω and i ∈ N+,

μi(p1) ≤μi(p2) +∇μi(p2)(p1 − p2)

+
Li

2
‖p1 − p2‖2

(34)

Let p1 = p2 − αi∇μi(p2), thus for all p1, p2,

μi(p1) ≤ μi(p2)− (1− Liα

2
)α‖∇μi(p2)‖2 (35)

Take p1 = p+i , p2 = p−i , and letting the search step αi

satisfy αi ≤ 1/Li. Then,

μi(p
+
i ) ≤ μi(p

−
i )−

αi

2
‖∇μi(p

−
i )‖

2
(36)

By plugging in (34), and letting p2=p∗, p1=p−i , one

obtains

μi(p
+
i ) ≤ μi(p

∗) +∇μ(p−i )(p
−
i − p∗)− αi

2
‖∇μi(p

−
i )‖

2

(37)
Notice that

1

2αi
(‖p−i − p∗‖2 − ‖p+i − p∗‖2) =∇μi(p

−
i )(p

−
i − p∗)

− αi

2
‖∇μi(p

−
i )‖

2

(38)
Inserting (38) into (37), one obtains

μi(p
+
i )− μi(p

∗) ≤ 1

2αi
(‖p−i − p∗‖2 − ‖p+i − p∗‖2) (39)

Thus, we reach the conclusion

0 ≤ (‖p−i − p∗‖2 − ‖p+i − p∗‖2) (40)

because μi(p
+
i ) ≥ μi(p

∗), and equality holds if and only if

p+i =p∗.

E. Proof of Theorem 2
Consider the sequence

ai = ‖p+i − p∗‖2, i = 0, 1, 2, ... (41)

As p−i =p+i−1, from lemma 1, if ai+1 �= 0

ai+1 < ai (42)

By using ai ≥ 0, it is known that limi→∞ ai exists.

Suppose limi→∞ ai=c > 0, and let another sequence {bk}
be bk=(ak − ak+1)/(2αi). By assumption 5, one obtains

limk→∞ bk=0. However, by plugging in (39), one obtains

bk ≥ μi(p
+
i )− μi(p

∗) = μi(p
+
i ) (43)

Thus, limi→∞ μi(p
+
i )=0. Suppose limi→∞ (p+i ) do not

exist or limi→∞ (p+i ) �= p∗. Because the sequence {p+i }
is bounded, there must be a subsequence of {p+i }, namely

{p+i′ }, that limi′→∞ (p+i′ ) exists and limi′→∞ (p+i′ ) = p∗∗ �=
p∗. Since {p+i′ } is a subsequence of {p+i }, one obtains

lim
i′→∞

μi′(p
+
i′ ) = 0 (44)

However, by Proposition 1, μi′(p
∗∗) ≥ wαx̃(‖p − p∗‖),

which contradicts (44). Thus, limi→∞ (p+i )=p∗, and the

proof is complete.
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