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Abstract— Dexterous manipulation has broad applications in
assembly lines, warehouses and agriculture. To perform broad-
scale manipulation tasks, it is desired that a multi-fingered
robotic hand can robustly manipulate objects without knowing
the exact objects dynamics (i.e. mass and inertia) in advance.
However, realizing robust manipulation is challenging due to the
complex contact dynamics, the nonlinearities of the system, and
the potential sliding during manipulation. In this paper, a dual-
stage grasp controller is proposed to handle these challenges.
In the first stage, feedback linearization is utilized to linearize
the nonlinear uncertain system. Considering the structures
of uncertainties, a robust controller is designed for such a
linearized system to obtain the desired Cartesian force on the
object. In the second stage, a manipulation controller regulates
the contact force based on the Cartesian force from the first
stage. The dual-stage grasp controller is able to realize robust
manipulation without contact modeling, prevent the slippage,
and withstand 40% mass and 50% inertia uncertainties. More-
over, it does not require velocity measurement or 3D/6D tactile
sensor. Simulation results on Mujoco verify the efficacy of the
proposed method. The simulation video is available at [1].

I. INTRODUCTION

Dexterous manipulation is essential for manipulators to
execute complicated tasks, such as circuit assembly, com-
modity organizing and fruit harvesting. To perform broad-
scale manipulations, a robotic hand usually has to manipulate
objects with various shapes and dynamics properties such
as mass and inertia. In many applications, accurate models
of the object dynamics are unknown in advance. They are
estimated from 3D sensing, as well as prior knowledge such
as density and statistical models. Consequently, uncertainties
are introduced into the system. It is difficult to deal with
such uncertainties in dexterous manipulation. First, the object
is not directly controlled by actuators. Alternatively, energy
is transferred from the fingertips to the object through
unknown contact dynamics. Second, the robotic hand for
dexterous manipulation can be a high degree-of-freedom
(DOF) nonlinear system and can not be directly written
into linear time-invariant (LTI) or linear parametric-varying
(LPV) form. Moreover, the potential sliding between the
fingertips and the object would degrade the object motion
tracking performance.

As a result, robust dexterous manipulation for nonlinear
systems has received significant attention. A robust controller
for contact uncertainties was proposed in [2]. The controller
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is designed for a LTI system linearized around an equilibrium
point. A force-position controller using 6D tactile sensors
was implemented to realize adaptive grasping [3]. Nonlinear-
ities were ignored due to its constant-pose grasping property.
In order to consider parameter variations caused by nonlin-
earities, a LPV control with smooth scheduling was applied
in [4], assuming that the nonlinearities can be approximated
through linear varying parameters. To deal with dynamics
uncertainties, a disturbance observer (DOB) was proposed
in [5] for tracking control. The nonlinearities and parameter
uncertainties are lumped into a disturbance term. It assumes
full state feedback, while in dexterous hand, the velocity
feedback is difficult due to the size constraints and cost issue.
Feedback linearization was applied to control an unmanned
aerial vehicle [6]. A linear state observer and a DOB are
combined to observe the state and the lumped disturbance.
Similar to [5], the structures of the parameter uncertainties
are ignored, and the linear state observer assumes a perfect
model for state estimation.

This paper proposes a dual-stage grasp controller for
dexterous manipulation under object dynamics uncertainties
and external disturbances. Distinctive features of this pa-
per include: 1) The nonlinearities are reduced by feedback
linearization on a nominal model. Compared with LPV
that assumes linear variations of parameters, the proposed
method is more computationally efficient for broad-scale
manipulations. 2) The robust controller is formulated as a
µ-synthesis problem, and the structures of the uncertain-
ties are considered by descriptor form, instead of treating
uncertainties as a lumped disturbance, which results in
information loss and a larger disturbance to resist. 3) By the
dual-stage formulation, the complicated contact modeling is
bypassed, and the contact force is regulated and the slippage
is prevented. 4) Moreover, the dual-stage grasp controller
does not require expensive 3D/6D tactile sensors or velocity
measurements of objects/joints.

The remaining of this paper is organized as follows. Sec-
tion II introduces the dual-stage grasp controller framework.
Section III describes the system dynamics and its combina-
tion with the feedback linearization. The robust controller
and the manipulation controller are presented in Section IV
and Section V, respectively. Section VI shows the simulation
results. Section VII concludes the paper.

II. DUAL-STAGE GRASP CONTROLLER
FRAMEWORK

Figure 1 shows the proposed framework of the dual-
stage grasp controller. In this figure, r, y, n and e denote
the reference pose, the actual pose, the measurement noise



Robust 

Controller

Nonlinear 

Dynamics with 

Uncertainties

Feedback 

Linearization

Linearized plant

Manipulation 

Controller

Fig. 1: The general framework of the proposed dual-stage
grasp controller.

and the pose error of the object, respectively. The signal u
denotes the control input to the linearized plant. The signal
udis is the external disturbance to the plant. F is the desired
Cartesian space force on the object. The signal τ is the
torque command to the hand in order to realize F . The
objective is to: 1) track the desired pose r of the object, 2) be
robust to object dynamics uncertainties (i.e. mass and inertia
uncertainties) and external disturbances udis, and 3) realize
firm contact without violating the friction cone constraints.

The dual-stage grasp controller consists of a robust con-
troller and a manipulation controller, as shown in Fig. 1.
The robust controller takes e as input, and generate F to the
object. It applies on a linearized nominal plant with nonlinear
uncertainties. The linearized nominal plant is obtained by
feedback linearization on a nonlinear dynamics. The F
obtained from feedback linearization and robust controller
is converted into τ by the manipulation controller.

In robust controller design, the feedback linearization is
directly connected to the nonlinear dynamics by the assump-
tion that the actual force on the object after executing τ is
close to F . The gap between these two forces is treated as
part of udis.

III. MODELING OF UNCERTAIN DYNAMICAL
SYSTEMS

A. State-Space Dynamics

The hand and object dynamics are described by:

Mh(q)q̈ + Ch(q, q̇)q̇ +Nh(q, q̇) + JTh (q, xo)fc = τ

Mo(xo)ẍo + Co(xo, ẋo)ẋo +No = G(q, xo)fc
(1)

where Mh/o, Ch/o and Nh/o are inertia matrices, Coriolis
matrices and gravities for the hand/object. q, q̇ and q̈ ∈ Rnq

are joint angle, velocity and acceleration, with nq as the
total DOFs of the hand. xo, ẋo and ẍo ∈ Rnx are a local pa-
rameterization of object position, velocity and acceleration,
where nx is the dimension of the pose of the object, with
nx = 6 for 3D manipulation (nx = 3 for 2D manipulation).
fc ∈ Rdcnc and τ ∈ Rnq are contact force vector and joint
torque vector, where dc is the dimension of each contact,
and nc is the contact number. Jh ∈ R(dcnc)×nq is the hand
Jacobian and G ∈ Rnx×(dcnc) is the grasp map [7].

If the contacts are fixed w.r.t both object and fingertips,
then

Jh(q, xo)q̇ = GT (q, xo)ẋo (2)

holds. Equation 2 assumes the contact forces remain in the
friction cone.

The object and hand dynamics in (1) can be connected
by (2):

M(q, xo)ẍo + C(q, q̇, xo, ẋo)ẋo +N(q, xo) = GJ−Th τ
(3)

where:
M = Mo +GJ−Th MhJ

−1
h GT

C = Co +GJ−Th ChJ
−1
h GT +GJ−Th Mh

d(J−1
h GT )

dt
N = No +GJ−Th Nh

(4)

In some applications such as fruit harvesting, only the
rough values of the mass mo and the inertia Io of the object
can be estimated. Therefore, Mo, Co, No cannot be exactly
known and would exhibit some uncertainties. Suppose that
the inertia, Coriolis and gravity can be represented as:

M = M̄ + M̃o, C = C̄ + C̃o, N = N̄ + Ño (5)

with nominal values:
M̄ = M̄o +GJ−Th MhJ

−1
h GT

C̄ = C̄o +GJ−Th ChJ
−1
h GT +GJ−Th Mh

d(J−1
h GT )

dt
N̄ = N̄o +GJ−Th Nh

where M̄o, C̄o, N̄o are nominal object inertia, Coriolis, grav-
ity, and M̃o, C̃o, Ño are corresponding uncertainties. The
torque command τ can be related to the object-centered
force F :

τ = JTh (G†F +NGλ) (6)

where NG is the matrix composed by the basis of the null
space of G, and λ is a free variable to control the magnitude
and direction of the contact force.

The state space equation can be derived by plugging (5)
and (6) into (3):

[
I O
O M̄

]
︸ ︷︷ ︸

M̄aug

+

[
O O
O M̃o

]
︸ ︷︷ ︸

M̃aug


[
ẋo
ẍo

]
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ẋ
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]
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]
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Ñaug

+
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O −I
O C̄

]
︸ ︷︷ ︸

C̄aug

+

[
O O
O C̃o

]
︸ ︷︷ ︸

C̃aug


[
xo
ẋo

]
︸︷︷︸
x

=

[
O
I

]
︸︷︷︸
BF

F

(7)
where I,O ∈ Rnx×nx . Equation (7) can be rewritten as:

ẋ =− M̄−1
aug C̄augx− M̄−1

aug N̄aug + M̄−1
augBFF−

M̄−1
aug M̃augẋ− M̄−1

aug C̃augx− M̄−1
aug Ñaug

(8)

In 3D manipulation, the parameters of (8) can be decom-
posed as:

− M̄−1
aug M̃aug = L1∆R1, −M̄−1

aug C̃aug =

2∑
j=1

L2j∆R2j

(9)



when parameterizing the rotation matrix R of the object by
Z-Y-X Euler angles E, with

L1 = L21 = [06×6; M̄−1]× diag(I3×3, Q
T
E)

∆ = diag(δmI3×3, δI1 , ...δI3) with‖∆‖∞ ≤ 1

R1 = −diag(∆mI3×3,∆I)× [06×6, diag(I3×3, QE)]

R21 = −diag(∆mI3×3,∆I)× [06×6, diag(03×3, Q̇E)]

L22 = [06×6; M̄−1]× diag(I3×3, R(QEĖ)̂ )

R22 = −diag(∆mI3×3,∆I)× [06×6, diag(03×3, QE)]

where ∆m ∈ R and ∆I = diag(∆I1, ...∆I3) are the
maximal mass and inertia uncertainties, QE ∈ R3×3 is a
Jacobian matrix from Euler angle rate Ė to angular velocity
of the object in body frame, and (•)̂ denotes the matrix
representation of cross product.

With (9), the uncertainty term −M−1
aug (M̃augẋ + C̃augx)

in (8) can be represented by:

L1∆ (R1ẋ+R21x)︸ ︷︷ ︸
z1

+L22∆R22x︸ ︷︷ ︸
z2

= L1 ∆z1︸︷︷︸
w1

+L22 ∆z2︸︷︷︸
w2

= L1w1 + L22w2

(10)

2D manipulation is used for illustration and comparison
purpose. The Coriolis uncertainty can be eliminated by
choosing the local parameterization as body frame translation
and rotation angle. Thus L21, R21 and L22, R22 are removed,
and

L1 = [03×3; M̄−1]

∆ = diag(δmI2×2, δI3) with‖∆‖∞ ≤ 1

R1 = [03×3,−diag(∆mI2×2,∆I3)]

(11)

In general 3D manipulation, the Coriolis term is typically
ignored due to the low-speed operation condition, as shown
in [8].

The control input u is F , and the augmented gravity N̄aug
can be compensated by an additional control input u0 =
N̄aug. The gravity uncertainty Ñaug is considered as part of
the disturbance udis. Then the uncertain state space model is
represented as:

ẋ = −M̄−1
aug C̄aug︸ ︷︷ ︸
A

x+ L1︸︷︷︸
B1

w1 + M̄−1
augBF︸ ︷︷ ︸
B2

(u− u0 + udis)

z1 = C1x+R1L1︸ ︷︷ ︸
D11

w1 +R1M̄
−1
augBF︸ ︷︷ ︸
D12

(u− u0 + udis)

y = [I3×3, 03×3]︸ ︷︷ ︸
C2

x w1 = ∆z1

(12)
where C1 = −R1M̄

−1
aug C̄aug. Equation (12) describes un-

certainties by linear fractional transformation (LFT). Notice
though the system is nonlinear, due to the state dependencies
of the dynamics parameters.

B. Combining Feedback Linearization with Modeling

A challenge in robust control is the implementation on
nonlinear systems. Although some extensions have been

done for LPV systems, the application of robust control to a
general nonlinear system is still challenging.

To reduce the influence of nonlinearities, feedback lin-
earization is applied to linearize the model. More specifically,
for (8), the command force may be:

F =
(
M̄−1

augBF
)† [

M̄−1
aug C̄augx+ M̄−1

aug N̄aug +BFu
]

(13)

Notice
(
M̄−1

augBF
) (
M̄−1

augBF
)†

= [03×3, 03×3; 03×3, I3×3],
rather than identity. Therefore, (8) becomes:

ẋ = Ax+BFu− M̄−1
aug M̃augẋ− M̄−1

aug C̃augx− M̄−1
aug Ñaug

A =

[
03×3 I3×3

03×3 03×3

]
(14)

Following the similar procedure as (9) and (11):

ẋ = Ax+ L1w +BF (u+ d)

z1 = R1Ax+R1L1w1 +R1BF (u+ d)

y = [I3×3, 03×3]x w1 = ∆z1

(15)

The model would be a LTI system if there were no
uncertainties. However, due to the parametric uncertainties,
the feedback linearization based on nominal parameters will
not be able to eliminate all the nonlinearities. Therefore, the
remaining nonlinear uncertainties after feedback linearization
are approximated by a LTI system evaluated around an
equilibrium point. The resultant system has the same form
as (15), except that the L1 and R1 are evaluated at the
equilibrium point. The feasibility of this approximation is
validated in Section VI.

The linearized plant described by (15) is controllable and
observable. The robust controller will be designed based on
this linearized plant.

IV. ROBUST CONTROLLER DESIGN

A. Design Scheme

Robust controller is to obtain desired Cartesian force of the
object for motion tracking with guaranteed robust stability
and performance. The generalized plant Pgeneral that the
robust controller will work on is shown in Fig. 2. GNL and
∆ define an upper LFT w.r.t. ∆ (denoted as Fu(GNL,∆))
to represent the nonlinear uncertain dynamics, as shown
in red dash box. The feedback linearization described by
α(x)+β(x)u is connected with the nonlinear uncertain plant
to linearize the nominal model, as shown in the blue dash-dot
box. Equation (15) is the combination of two boxes.

The inputs to the generalized plant Pgeneral are
{r, udis, n, u}, which denote the pose reference, the input
disturbance, the noise and the control input to the plant.
The outputs of the plant are {wperf, wu, e}, which denote
the tracking performance, the action magnitude and the
pose error. Wperf is to suppress tracking errors at different
frequencies. Wu is to regulate the control input. Wdis is to
shape the input disturbance. Wn is to shape the measurement
noise. The structures of the weighting functions will be
described in Section IV-B.
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Fig. 2: Generalized plant with weighting functions.

Fig. 3: Illustration of the closed-loop system.

The connection between the generalized plant Pgeneral and
the controller K is described by Fig. 3. Pgeneral and K
define a lower LFT w.r.t. K as Fl(Pgeneral,K), to denote the
closed-loop system. The closed-loop system concatenates the
inputs {r, udis, n} as d and the outputs {wperf, wu} as e. The
objective of the robust controller design is to synthesize K
to keep e small for all reasonable d. The small is in the sense
of infinity norm, i.e.

K = argmin
K

‖FL(Pgeneral,K)‖∞

with:
e = FL(Pgeneral,K)d
‖FL‖∞ := max

ω∈R
σ̄(FL(jω))

(16)

The D-K iteration is applied to solve (16):

min
K

inf
D
‖DFL(Pgeneral,K)D−1‖∞ < 1 (17)

Readers can refer [9] for implementation details.
The designed controller K will be used to calculate u

based on the pose error e. Then the output of the controller
is combined with feedback linearization (13) to obtain the
desired Cartesian space force F for the object.

B. Design of Weighting Functions

The general form of a weighting function W (s) in Pgeneral
can be written as:

W (s) = diag([a1W1,1(s), a2W2,2(s), a3W3,3(s)])

where ai is the weight to the i-th channel. Wi,i is a SISO
filter determined by high-frequency gain Gh, low-frequency
gain Gl, cross-over frequency ωc, and order n. In this
section, the principle for choosing parameters are introduced.
The concrete values for these parameters will be shown in
Section VI.

1) Design of Performance Weighting Function Wperf:
Wperf penalizes the tracking error caused by the general
disturbance d. High cross-over frequency wc penalizes the
disturbance with large bandwidth. With larger wc, the system
takes shorter time to settle down, and the desired force
tends to change at higher frequencies. Consequently, the
error oscillates at higher frequencies. The low-frequency gain
Gl penalizes the magnitude of low-frequency disturbance.
When Gl is very small, the low-frequency error is large,
but the high-frequency error is small, which means that the
system takes shorter time to converge. On the other hand,
the high-frequency gain Gh penalizes the magnitude of high-
frequency disturbances. Increasing Gh will speed-up the con-
vergence. However, the oscillation will be enlarged, and the
low-frequency performance will be compromised. As for n,
large order n makes the system have more freedom to choose
the best controller, while an excessive large n increases the
order of the controller. The motivation for tuning ai is the
fact that the behavior in translation directions and rotation
direction are usually different because of different parameter
scales.

2) Design of Action Weighting Function Wu: The actions
at different frequencies are penalized equally. This is a
special case when Gl = Gh, which means the weighting
function is a constant. Similar as before, large Gl/h pe-
nalizes the magnitude of action. A larger Gl/h results in
more penalty to control effort, thus the force generated by
controller is smaller. The smaller force can result in slower
convergence speed and poor disturbance rejection. On the
contrary, a small Gl/h can make the controller generate
excessive large force and damage the object. The influences
of ai and n can be reflected into changing Gl/h.

3) Design of Disturbance Weighting Function Wdis: The
disturbance weighting function is used to shape the exoge-
nous disturbance in the generalized plant Pgeneral. The cross-
over frequency ωc indicates the shaping bandwidth. Gener-
ally, it enlarges the magnitude of low-frequency disturbances
and shrink the magnitude of high-frequency disturbances. A
large Gl will create a virtual disturbance with large low-
frequency gain. Therefore, the controller would concentrate
on reducing the low-frequency disturbance. In our implemen-
tation, the gravity is treated as static disturbance. Therefore,
increasing Gl makes the actual system response faster by
using the larger control effort. The high-frequency gain Gh
specifies the shaping factor to high-frequency disturbances.
A large value makes the system consider the disturbance
rejection in full scale, and the low-frequency disturbance re-
sponse will be compromised. Similar with Wperf, ai specifies
the scales of shaping for different channels, and n specifies
the freedom of designing Wdis.

4) Design of Noise Weighting Function Wn: The Wn is
designed to be a high-pass filter to shape the noise to the
generalized plant Pgeneral. The reasons are twofolds. First,
the vision sensor used for object pose detection has high-
frequency noises. Second, the manipulation controller used
for desired force approximation is a low-pass filter, which
may result in additional high-frequency approximation error.



The tuning of noise weighting is similar with disturbance
weighting tuning.

V. MANIPULATION CONTROLLER DESIGN

The manipulation controller is utilized to generate torque
commands for the hand to track the desired force generated
by the robust controller in Section IV. The manipulation con-
troller consists of a force optimizer, which searches desired
contact force f on fingertips from the desired force F on the
object, and a joint-level torque controller, which generates an
appropriate joint torque vector τ to reproduce f . The force
optimizer is formulated into a quadratic programming (QP):

min
β

α1‖f‖22 + α2‖f − fprev‖22 + α3‖Ψ‖22 (18a)

s.t. Ψ = F −G(q, xo)f (18b)
f = Bβ (18c)
β ≥ 0 (18d)

τmin ≤ JTh (q, xo)f ≤ τmax (18e)

where f = [fT1 , ..., f
T
nc

]T is a concatenated contact force
vector in contact frame. fprev is the contact force of the
previous time step. B = diag{B1, ..., Bnc

} and Bi is a
conservative pyramid approximation of friction cone [10].
β ≥ 0 is the non-negative coefficients of columns of B. A
slack variable Ψ is introduced to relax the hard constraint
F = Gf , since F = Gf might result in an infeasible solu-
tion, and the location measurements of contact points might
be noisy. The constraints (18c) and (18d) together ensure that
the contact force remains within positive colspan(B) (i.e.
friction cone). Constraint (18e) guarantees that the contact
force f is realizable.

The weights α1, α2, α3 are used to balance different cost
terms. They are tuned to penalize the magnitude of the
contact force, the change of the contact force and the force
tracking error, respectively. The tuning process considers the
response speed of the real-world hand actuators and the force
tracking performance.

The joint level torque control takes the optimal contact
force f∗ from the force optimization as input, and yields the
control torque by τ = JTh (q, xo)f

∗.

VI. SIMULATION RESULTS

A. Simulation Setup

The controller is implemented in the Mujoco physics
engine [11]. The simulation time step is set to be 2 ms. Our
platform is a desktop with 4.0 GHz Intel Core Quad CPU,
32GB RAM, and running Windows10 operating system.

The hand models used in the simulation are shown in
Fig. 4. The general hand model used in 3D manipulation
is shown in Fig. 4(a). It has four identical fingers and 12
DOFs. Each finger has three revolute joints. For illustration
purpose, a planar hand with two identical fingers and 4
DOFs is set up, as shown in Fig. 4(b). Two hands are
equipped with joint encoders, motor torque sensors, and
one-dimensional distributive tactile sensors. The manipulated

(b)(a)

Fig. 4: Two hand models used in the simulation.

object is approximately 0.5 kg. The dynamics parameters
of the object are assumed to be unknown to the controller.
A vision system can be employed to estimate the dynamics
parameters, and obtain the motion by tracking the features on
it. Currently, the object pose is obtained from the simulator,
and the mass and inertia are assumed to have 40% and 50%
uncertainties in the robust controller design.

B. Parameter Lists

The parameters of the weighting functions in Section IV-B
are shown in Table I:

TABLE I: Parameters of Weighting Functions

Weightings ωc Gl Gh (a1, a2, a3) n
Wperf 2π 1100 0.9 (1,1,2) 2
Wu N/A 0.0001 0.0001 (1,1,0.5) 1
Wdis 200π 80 0.1 (1,1,10) 2
Wn 20π 0.1 10 (1,1,1) 1
The parameters of manipulation controller are set as

follows: the joint torques are constrained by τmin = −0.5 Nm
and τmax = 0.5 Nm. 0.5 Nm is twice the joint torque in static
case. The weights for different cost terms in (18) are α1 =
0.1, α2 = 0.1, α3 = 1000. The dimensionality of the contact
space in the simulation is 6, with sliding, torsional and rolling
friction coefficients 1, 0.005 and 0.0001, respectively. In
manipulation controller design, we use the point contact with
friction model [7] and assume a conservative sliding friction
coefficient 0.5774. The algorithm has been verified to be
robust to various contact surface parameters (e.g. stiffness
and damping).

C. Simulation Results

In this section, the proposed controller is compared with
disturbance observer (DOB) based tracking [5] and modified
impedance control (MIC) [12]. For illustration purpose, we
first show the comparison results in 2D manipulation.

The desired object motion is to move from (139 mm, 0
mm, 0◦) to (150 mm, -10 mm, 5◦). The equilibrium point is
chosen at the beginning of the contact. The configuration of
both the hand and the object at the beginning of the contact
can be planned by grasp planning [13]. In this paper, the
equilibrium point is prerecorded for simplicity. Therefore,
we can calculate all the nominal parameters that are required
for modeling. The controller is designed based on 40% mass
and 50% inertia uncertainties. The order of the controller is
29 after model reduction. The robust stability margin is 1.62,
which means that the system can withstand about 62% more
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Fig. 5: Performance of the proposed method in Mujoco.
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Fig. 6: Performance of the robust controller without feedback
linearization.

uncertainties than are specified in the uncertain elements
without going unstable.

The simulation results of the proposed method under -20%
mass uncertainty and 50% inertia uncertainty are shown in
Fig. 5. Fig. 5(a) shows the position and orientation errors
of the object. The maximum settling time1 of all channels
is 0.91 seconds. Fig. 5(b) shows the desired force on the
composite hand-object system. The force in gravity direction
(shown in red) rapidly converges to actual gravity of the
composite system (purple dash line), though there exists 20%
variations between the nominal and the actual object mass.
The desired force is converted into joint torque command by
the manipulation controller. Fig. 5(c) shows the actual force
on the object detected by the force sensor (force sensor is
used for analysis of the results only).

The tracking performance of the robust controller without
feedback linearization is shown in Fig. 6. Compared with
Fig. 5, the robust controller without feedback linearization
has more severe oscillation and longer settling time. The
oscillation is caused by the large disturbance introduced by
the nonlinearities of the hand-object system.

In Section III-B, we introduce feedback linearization to
reduce the nonlinearities of the nominal system. However,
the nonlinearities still exist in the uncertain plant, as shown
in (15). The model uncertainties in (15) are evaluated at an
equilibrium point, which introduces additional disturbance.
We call it the disturbance from the LTI approximation, and

15% threshold is used for all settling time calculations.
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Fig. 7: Disturbance caused by LTI approximation.

Fig. 8: Performance of DOB [5] in Mujoco.

denote it as dLTI:

dLTI = (I − M̄eqM̄
−1)(M̃oẍo + Ño)− M̄eqM̄

−1C̃oẋo (19)

where M̄eq is the nominal inertia matrix at equilibrium point.
The magnitudes of dLTI in both time and frequency domain
are shown in Fig. 7. Figure 7(a) and (b) show the magnitude
and spectrum of dLTI. The disturbance caused by equilibrium
approximation mainly lies in low-frequency region(<12 Hz),
which has been suppressed by the proposed robust controller.

In comparison, the simulation results of the DOB and MIC
under the same amount of mass and inertia uncertainties are
shown in Fig. 8 and 9. The convergence speed of DOB
(settling time 3.33 seconds) is slightly faster than MIC
(settling time 3.61 seconds). Both of these two methods make
the desired and actual force in y direction converge to actual
gravity. In DOB method, the nonlinearities and uncertainties
are lumped into a disturbance term, which loses structures of
both the nominal models and the uncertainties. Therefore, the
system using DOB takes longer time to converge. Besides,
the tuning process of DOB is time consuming, which poses
a potential challenge to using this method. Our best tuned
result is shown in Fig. 8. The MIC method uses constant gain
matrices, and relies on an integral term to accumulate force
to compensate gravity uncertainty, which also results in slow
convergence, as shown in Fig. 9. Moreover, the imprecise
inertia matrix causes certain difficulties in guaranteeing the
stability of the controller.

Finally, the 3D manipulation performance for 20% mass
and 50% inertia uncertainties using the 12 DOFs hand is
shown in Fig. 10. The Coriolis term is ignored and the



Fig. 9: Performance of MIC [12] in Mujoco.

Fig. 10: Performance of 3D manipulation using the proposed
algorithm.

velocity measurement is not required. The desired object
position and orientation displacements are (4, 4, 11) mm
and (0, 0, 0.5) rad. The tracking errors are shown in Fig. 11.
Fig. 11(a)(b) shows the position and orientation errors for
20% mass and 50% inertia uncertainties, and the settling
time is 1.11 seconds. Fig. 11(c)(d) shows the position and
orientation errors for 40% mass and 50% inertia uncertain-
ties, and the settling time is 2.21 seconds.

VII. CONCLUSION

This paper has proposed a dual-stage grasp controller,
which includes a robust controller and a manipulation con-
troller, to achieve dexterous manipulation under object dy-
namics uncertainties and external disturbances. Feedback
linearization has been applied to reduce the nonlinearities
of the composite hand-object system. By utilizing the struc-
tures of the uncertainties, the proposed robust controller can
achieve faster convergence and tolerate more uncertainties
compared to other methods based on DOB and MIC. The
dual-stage formulation skipped complicated contact mod-
eling, and was able to regulate contact force and prevent
slippage. Moreover, it did not require joint/object velocity
measurement or 3D/6D tactile sensor. Simulations showed
that our method can achieve robust manipulation and the
fast tracking performance.

In the future, the authors plan to combine this work with
finger gaits planning [12] to address the unknown object
shape, unexpected slippage issues and realize large-scale
object motions.

(a) (b)

(c) (d)

Fig. 11: Performance of the proposed method on 3D manip-
ulation.
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